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On Being the Right Weight

Outside genetics, where he was a pioneer, J.B.S. Haldane
is now mostly remembered for a wonderful essay he wrote in
1928, called On Being the Right Size. If you have not read it
yet, go find it on the Web—you are in for a treat. It opens
by wondering about the different sizes of animals:

. . . for some reason the zoologists have paid singularly little
attention to them. In a large textbook of zoology before me I
find no indication that the eagle is larger than the sparrow, or
the hippopotamus bigger than the hare, though some grudging
admissions are made in the case of the mouse and the whale.
But yet it is easy to show that a hare could not be as large as
a hippopotamus, or a whale as small as a herring. For every
type of animal there is a most convenient size. . .

He then takes us through a couple of delightful pages (e.g.,
“an elephant turning somersaults”) to teach us some very,
very basic facts of life, with (here we go!) a mathematical
background. For instance: an insect needs no lungs since the
surface area of its body—say, it is shaped like an elf stand-
ing 17 mm high—would be about ten thousand times, but its
volume a million times, smaller than yours. From the point
of view of its innards, its outer skin is 100 times more ca-
pable than yours of supplying it with oxygen, etc. Likewise,
if Nature enlarged you even just 10 times in all directions,
you would (a) suffocate and (b) collapse, because each cm2

of bone cross-section would have to carry 10 times its present
load. To make sure that you can stand up straight, your
weight should therefore be appropriately tuned to the square
of your linear size.

This brings us to the Body Mass Index, whose odd formula

BMI = 703
w

h2
,

where w is the weight in pounds and h the height in inches,
triggered this editorial. A friend from Arkansas had informed
us that public schools in his state must now account for the
BMI of each of their students, and he was puzzled by the 3
in the 703. So were all of us at the PIMS office. Savvy as
they are, Arkansas school nurses will, of course, toss off this
calculation and record its result with 8-digit precision, but
what if the calculator had broken down? If a guy was 70
inches tall and 140 pounds heavy, it would be so convenient
to cancel 700 × 140 against the 70 × 70 for a BMI of 20, but
the extra 3 ruined such simple-minded arithmetic. Why was
it there?

Somebody suggested it had to do with the year 1937 (since
703 =19 × 37), when US spinach growers erected a statue of
Popeye the Sailor Man, whose BMI could be a benchmark.
This was quickly rejected, because that sculpture was in Texas
not Arkansas. Someone else noted that the BMI is measured
in pounds per square inch, hence represents the pressure ex-
erted by the body on a floor. Okay, we said, but 20 lb/in2

would be an awful lot for anybody standing naked, even in
high heels, and the 3-digit precision could only refer to a spe-
cific person on a specific day after a 48 hour fast. We seemed
to be going nowhere, until our professional curmudgeon asked
whether π in the Sky might not have a BMI-problem. “Maybe

it puts too much pressure on young brains,” he said. “Look
at your eyes popping out because of 703.”

He loves to remind us of our editorial quandary: we wish
to show you what our mathematics is doing out there in the
world, but at the same time would like you to understand
and enjoy it. But the users of mathematics—be they nurses
in Arkansas or meteorologists in Manitoba—rarely look un-
der the hood; they take the formulas or algorithms handed
to them and apply them with heart-warming trust. Never-
theless, they do mould them to fit their needs—sometimes so
thoroughly that outsiders can hardly recognize them. “In my
days,” said Colin (the curmudgeon), “ mathematicians would
never publish anything they did not understand themselves.”
And indeed, he has drawers full of papers with commentaries
on anything mathematical that crosses his mind—including
some mysterious passages of this magazine. He shoves them
under our noses, but we are always too busy to look.

“This will now change,” spake our Editor-in-Chief after our
defeat by the silly 703. “Supplementary explanations will be
put on the Web, starting with the two items from the Septem-
ber, 2003 issue of π in the Sky that Colin just showed me.”
And so it came to pass: you’ll find this first supplement at
http://www.pims.math.ca/pi/supp/7/. Editing diligently,
Colin will gradually empty his π-drawer, and the rest of us
will chip in as best we can. Of course, we also welcome sub-
missions from you, the readers. We need all the help we can
get, as we try to catch up with the past and keep up with the
present—not always an easy task.

You may have noticed that π in the Sky did not come down
to earth last spring. It wanted to stay aloft, it said, “to
watch all the crazy turmoil of life.” As a result, the present
issue has an article on turbulence, and three on epidemics—
also part of life. You’ll probably first be attracted by Mary
Wonham’s mosquito story. The articles by Fred Brauer and
David Earn have very similar subjects with different mixes of
form and content—simple premise with rigorous treatment,
or vice versa. They might well be read in parallel.

By the way, we did eventually find the clue to the 703.
In the metric system, height is measured in centimetres and
weight (actually: mass) in kilograms. The conversion factors
H = 2.54 and W = 0.4536 yield W/H2 = 0.070308. Hence
the metric BMI factor is 10 000 instead of 703.

K.H.

c©Copyright 2004
Sidney Harris
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Mathematical Models
and Infectious Disease

Dynamics
Mark Lewis†

Mathematical models can be used to understand what fac-
tors govern infectious disease outbreaks including HIV/AIDS,
West Nile virus, and even the bubonic plague! The purpose
of the model is to take facts about the disease as inputs and
to make predictions about the numbers of infected and unin-
fected people over time as outputs.

Factors that can go into the models include the length of
time one is ill, the length of time one can infect others (often
different than the total length of time one is ill), the level
of contagiousness of the disease (i.e., the likelihood of infect-
ing another individual if one comes into close contact), the
number of uninfected (susceptible) individuals, and so forth.
Mathematical modellers then feed these facts into a set of
equations.

In the three accompanying articles (see pages 5–17), the
equations used are referred to as differential equations. Dif-
ferential equations involve derivatives of functions. For exam-
ple, if the number of infected individuals at a given time t is
represented by function I(t), then the time derivative of I, de-
noted by I ′(t), says how quickly I(t) is changing. If I ′(t) > 0,
the disease is increasing with time and if I ′(t) < 0, the disease
is decreasing with time.

Being able to make predictions about disease dynamics is
really helpful for public health. If we know there will be an
outbreak we can prepare for it. Alternatively, if we have a
reliable model, we can study how to prevent an outbreak and
save lives by changing the factors we can control using public
health means. These factors include education, immuniza-
tion, quarantine regulations, and health treatment strategies.

The application of mathematical models to infectious dis-
ease dynamics has been a real success story in 20th century
science. Even though the dynamics of disease appear to be
very complex, surprisingly simple mathematical models can
be used to understand features governing the outbreak and
persistence of infectious disease.

Early models, such as the one by Kermack–McKendrick
(see Fred Brauer’s article on pages 10–13), were applied to
understand the dynamics of historical diseases, such bubonic
plague. Amongst other things, the models could be used to
predict the fraction of the population that would survive a
major disease outbreak.

Here the form of the mathematical model is a system of
differential equations (say, one equation to track the levels
of each of the susceptible S(t), infective I(t), and previously
infected but now recovered or dead R(t) portion of the pop-
ulation). The equations are ‘coupled’ to each other, because

† Mark Lewis is the Canada Research Chair in Mathematical Bi-
ology and a Professor in the Department of Mathematical and Sta-
tistical Sciences at the University of Alberta. His e-mail address is
mlewis@math.ualberta.ca.

the growth of infectives relies on having new susceptibles to
infect, the growth of removed (recovered or dead) relies on
having had infected individuals, and so forth.

Such models can be easily put on the computer, using soft-
ware such as Maple, to make predictions about changing levels
of disease outbreak over time. Alternatively, as outlined in the
article by Fred Brauer, mathematics can play a more central
role. Analysis of the models yields useful statistics about the
disease, such as the ‘basic reproduction number’—a measure
of infectivity, expressed as the number of secondary infections
arising directly from a single infective individual surrounded
by susceptibles. Methods to control the disease are then sum-
marized by the degree to which they able to reduce the basic
reproduction number to a number less than one.

Recurrent 20th century diseases, such as childhood measles,
can be analyzed using a similar framework (see David Earn’s
article on pages 14–17). Here models are extended to include
birth and death of individuals and seasonal and other changes
in the levels of contact, for example, between school-age chil-
dren. Trends in birth rates and effects of immunization can
also be incorporated into the models. With the analysis of
these augmented models, new questions can be posed and
answered, varying from: “why do diseases exhibit complex
temporal patterns, ranging from cycles to erratic, seemingly
chaotic fluctuations?” to “what is the optimal immunization
strategy for a given disease, given finite resources and vaccine
availability?”

Much of the recent mathematical work in disease modelling
has focused on emerging diseases, ranging from HIV/AIDS,
to SARS and West Nile virus (see Marjorie Wonham’s article
on pages 5–10 and the last part of Fred Brauer’s article).
Here recommendations regarding control methods are needed
urgently. For most emerging diseases, modellers do not have
the luxury of comprehensive data sets showing outbreak levels
over time. Therefore the models must be developed based
on detailed understanding of the components of the disease
dynamics and from our experiences with modelling previous
diseases. Here predictions and recommendations for control
stem from the mathematical and numerical analysis of the
models (see Marjorie Wonham’s article). The modelling of
emerging disease is the current challenge for mathematical
epidemiologists, and it is one that will be with us for some
time to come.

c©Copyright 2004
Wieslaw Krawcewicz
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The Mathematics of
Mosquitoes and
West Nile Virus
Marjorie Wonham†

Lying on my sleeping pad, I warily eye the mosquito
perched above my head. I could reach up and squash it, but
that would require extracting my arm from the warmth of my
sleeping bag. So for now, it clings to the yellow nylon of my
tent, unaware of its reprieve. Although I may triumph over
this particular mosquito, I am all too aware of being vastly
outnumbered outside my tent.

Until recently, my interest in mosquitoes was largely prag-
matic: avoid, repel, or swat. Lately, though, I have developed
a grudging curiosity about how they make a living. Fact: a
female mosquito overwinters with fertilized eggs so the first
thing she does in spring, before even feeding, is lay eggs. Fact:
Even if she doesn’t find a blood meal, she can survive by
sucking plant juices. Fact: the combined meals of a mosquito
horde can (and do) bleed a newborn calf to death. Fact: at
best a mosquito bite simply itches; at worst, it means disease
transmission—malaria, yellow fever, dengue fever, and West
Nile virus are all mosquito-borne.

It is West Nile virus that has piqued my interest of late.
First identified in Uganda in 1937, the virus is well estab-
lished in its native Africa where it lives primarily in birds
and is transmitted among them by mosquitoes. Only occa-
sionally does a mosquito transmit the infection to a mammal.
From time to time a West Nile virus outbreak occurs in Eu-
rope and Africa—in Israel in the 1950s and South Africa in
1974, and more recently in Romania, Morocco, Tunisia, Italy,
France, and Russia. Just recently, West Nile virus made its
first known, and headline grabbing, North American appear-
ance.

In the summer of 1999, the birds of New York City began
mysteriously to die, their bodies appearing conspicuously in
the city zoo, parks, and backyards. At first the cause was
unknown, but by December of the same year it had been
identified, in two reports published in the same issue of Sci-
ence magazine, as West Nile virus, a disease never before seen
on this continent. In subsequent summers, West Nile virus
spread west across the continent reaching Ontario in 2001,
California and Washington in 2002, and Alberta in 2003.

Corvids—crows and jays—were the hardest hit among the
birds; other passerines such as sparrows also carried the virus
but were dying in smaller numbers. Among mammals, horses
appeared especially vulnerable, with a mortality rate of ap-
proximately 40%. Human cases were less common and less
likely to be fatal, but were a growing health concern nonethe-
less. By the end of 2003, the virus had been identified
in 7 Canadian provinces and 46 U.S. states, in at least 10

† Marjorie Wonham is a Postdoctoral Fellow in the Centre for
Mathematical Biology and the Department of Mathematical & Sta-
tistical Sciences at the University of Alberta. Her e-mail address is
mwonham@ualberta.ca.

mosquito, 150 bird, and 17 other vertebrate species, and in
a total—for that year alone—of over 11,000 human cases in
Canada and the U.S.

In Alberta, West Nile virus was first reported in 2003. The
year before, I had moved to Edmonton to join a group of
mathematical biologists at the University of Alberta. There,
I was immersed in a world of mathematical modelling used to
tackle biological questions. Two years later, here in my tent
on a canoe trip in the Northwest Territories, I have a chance to
reflect on the unpredicted collaboration that developed with
my mathematical colleagues on the dynamics and control of
West Nile virus.

At first glance, we made an unlikely trio for this project.
Tomás was a graduate student and programming whiz who
studied chamomile invasions on farmland. Mark was a math-
ematical biologist who had modelled the movement of birds
and wolves. And I was a marine ecologist with a mathemat-
ical background largely limited to reading tide tables. But
together we were galvanized by a question from a colleague
in Ontario: “How come no one is modelling West Nile virus?”
Hugh asked. And with that casual question began our Year
of the Mosquito.

How could mathematical modelling help us understand
West Nile virus dynamics? The virus was spreading, and
control proposals were beginning to include spraying adult
and larval mosquitoes, removing larval mosquito habitat, and
even removing birds. Since all of these strategies would cause
additional impacts on the environment, perhaps modelling
could help maximize control effectiveness while minimizing
unwanted effects? I had no idea where to begin, but luckily,
I was in good mathematical hands.

Mark and Tomás introduced me to a class of disease models
known by their acronym as SIR models (see accompanying
articles by Fred Brauer and David Earn). These models were
first extended to vector-borne diseases by R. Ross in the early
1900s and G. Macdonald in the 1950s, to combat malaria.
Since then, a large associated body of mathematical theory,
and an impressive history of contributing to disease control,
have both evolved.

In an SIR model, the host population is divided into three
groups: Susceptible (healthy uninfected individuals), Infec-
tious (infected and capable of transmitting the disease), and
Removed (immune, dead, or otherwise removed individuals).
The rates at which an average individual moves from Sus-
ceptible to Infectious and from Infectious to Removed are
determined, and the relevant birth and death rates are incor-
porated.

Once constructed, a key piece of information can be ex-
tracted from an SIR model, called the disease reproduction
number, or R0 (“R-zero” or “R-naught”). R0 tells us the
number of new infections that would result from the intro-
duction of a single infectious individual into an entirely sus-
ceptible population. For example, if a student with chicken
pox walked into a classroom of individuals with no previous
exposure to the disease, how many new cases would be caused
by direct contact with the initial infectious student? The an-
swer is given by R0. Or for West Nile virus, if an infectious
bird arrived in a new city, how many other birds would be
infected (via mosquito bites) by that original bird? Again,
R0 tells us the answer.

The expression for R0 is constructed, according to a par-
ticular formula, from variables and parameters in the model.
Reasonably enough, it takes into account factors such as how
long the first individual remains infectious, the likelihood of
contact between the infectious and susceptible individuals (ei-
ther directly or via another species), and how often contact
leads to disease transmission. Details of the mathematics un-
derlying the calculation of R0 are given in the article by Fred
Brauer.
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c©Copyright 2004
Gabriela Novakova

For disease control, the value of R0 is key. R0 < 1 means
that an infectious individual will, on average, generate fewer
than one new infection, so the disease will die out even with-
out control efforts. On the other hand, R0 > 1 means that an
infectious individual will generate more than one new infec-
tion, so a disease outbreak will occur. In this case, the disease
can be controlled by methods that alter one or more of the
model components—such as mortality, contact, or transmis-
sion rates—to reduce R0 below one.

Armed with this mathematical background, we were ready
to develop an SIR model for West Nile virus in North Amer-
ica, calculate R0, and identify how and how much to control
the disease to prevent an outbreak. First, we had to define
the biological and geographic scope of our efforts. We had
already learned that the virus persisted in transmission cy-
cles between mosquitoes (vectors) and birds (reservoir hosts).
Although it occasionally spread to other vertebrates (includ-
ing humans), it seemed not to return to mosquitoes. In other
words, although an infection might be deeply significant to
the human in question, it would not influence the overall dis-
ease dynamics.

This biological fact helped us simplify the mathematical de-
scription: by viewing the virus outbreak level in mosquitoes
and birds as a proxy for the human infection risk, we could
limit our model to only the vector and the reservoir host. For
mosquitoes, we focused on the species group that was emerg-
ing as the dominant North American vector (Culex pipiens
spp.). For birds, we focused on the species with the best
available infection and mortality data, the American crow
(Corvus brachyrhyncos). And since the best virus prevalence
data were available where West Nile had first appeared, we
confined ourselves to modelling the New York City outbreak.
Finally, since the disease outbreak at this latitude showed a
marked seasonality, appearing in summer and disappearing in
winter, we confined the model to a single season from spring
through fall.

Soon we had the skeleton of a model. We defined three
groups (S, I, and R) for both mosquitoes and birds. From the
literature, we obtained estimates of the mosquito biting rate
and the transmission probabilities that allowed a mosquito to

infect a bird (which was around 88%) and a bird to infect
a mosquito (which was only around 16%). We had recovery
and mortality rates for birds, but not for mosquitoes since
they didn’t seem to be affected by the disease. Since we had
birth and death rates for mosquitoes but not for birds, we
assumed the birds reproduced once in spring before the model
began, and their background (natural) mortality rate would
be negligible in the one summer.

To refine the model and assign numerical values to the pa-
rameters, we divided up the work according to our expertise.
Tomás investigated how to solve and simulate these models
on a computer, and Mark explored the mathematical theory
underlying this approach. I searched the biological literature
for parameter values for mosquitoes, birds, and virus trans-
mission. I didn’t envy Tomás and Mark, as my task seemed
much the easiest; I was surprised to learn later that they felt
the same way about their roles.

Nonetheless, tracking down the biological data took some
sleuthing. Today, from the safety of my tent, I can make a
guess as to the local mosquito abundance outside: it’s very,
very high. If I were to stick out a bare arm, it would be
covered almost instantly; if I left it out, I could watch an in-
dividual probe repeatedly, biting several times before finding
her blood meal. (I don’t do this often.) As I canoe down the
river, I sometimes see a cloud of mosquito larvae rising to the
surface and hatching.

For our model, though, we needed observations like this to
be quantified. Just how many mosquitoes were out there?
How many eggs did one female lay, and how many larvae
hatched? How many crows were there? How many mosquito
bites per crow in a day? And how contagious was the virus?
My quest was something of a scavenger hunt travelling back
through biological history, with each paper leading me to an
older one. At the same time, new reports about the virus were
appearing almost daily in print and online. I divided my time
between dusty library shelves and internet listserves.

New biological information, new equations, new parameter
estimates, new model analyses, and new simulations surfaced.
For several months, we worked to tailor the model as best
we could to the biological information. In the interests of
tractability, the model had to remain as simple as possible.

c©Copyright 2004
Wieslaw Krawcewicz
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But the biological complexity seemed almost infinite. At
times, I wondered if we were simplifying too much for the
model to be informative, while Tomás and Mark wondered
if the biology was making the model too complicated to be
useful.

In the end, the biology dictated two substantial additions
to the model. We learned that mosquitoes could spend quite
a long time, up to 14 days, as aquatic larvae that don’t bite
birds and therefore don’t transmit the disease. It can also
take quite a long time, perhaps 10–12 days, for an infected
mosquito to develop a viral load high enough to transmit
the disease back to a bird. These two time periods could
add up to almost half a mosquito’s lifespan, so they could
substantially alter the disease dynamics. We therefore added
two new groups to the population: one for larval L and one
for exposed E mosquitoes.

With these additions, it seemed we finally had a model we
all felt was realistic and tractable. This is the model illus-
trated in Figure 1. Now that we had the model, it was time
for a test: would it behave realistically? We had to know this
before we could use R0 to make any predictions.

As a test, we chose the records of West Nile virus incidence
in both mosquitoes and birds from New York City in 2000.
We plugged our literature-based parameter estimates into
the model, crossed our fingers, and ran the simulations. Sure
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Infectious (IB)

Susceptible (SB)
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Larval (LM )
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death rate
from virus

(µV )
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Figure 1: Cartoon illustration of SIR model for West Nile
virus cross-infection between birds and mosquitoes. The
boxes represent variables: the number (or proportion) of birds
that are susceptible, infectious, and removed, and mosquitoes
that are larval, susceptible, exposed, and infectious. The ar-
rows represent parameters: the daily rates at which the value
of each variable changes. Solid black lines show the rates
(and reasons) for individual birds and mosquitoes moving
from one category to another. The two dashed lines represent
the rates at which mosquitoes infect birds and birds infect
mosquitoes. The red and blue arrows respectively show the
birth and death rates for mosquitoes (which can reproduce
multiple times during a single season).
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Figure 2: Numerical simulations of crow proportions and
mosquito numbers predicted by the West Nile virus model
for a steady-state mosquito population (SM0

/NB0
= 30) over

a season lasting 14τ days, where τ is a time unit representing
9.4 days (this time unit may seem funny, but it is a result of
manipulating the equations to a nondimensional form—a de-
tail that is not shown here). a) the proportion of susceptible
(solid line) and removed birds (dashed line) on the left axis
and infectious birds (red line) on the right. b) the number of
susceptible (solid line) and larval mosquitoes per bird (dashed
line) on the left axis and exposed (dashed red line) and infec-
tious mosquitoes per bird (solid red line) on the right.

enough, for a reasonable range of starting values the model
predicted a range of mosquito and bird infection levels that
matched the observed data (Figure 2). We were now in a
position to use the model to investigate control strategies.

Following methods developed by other mathematicians, we
calculated R0 for our model, which turned out to be made
up of three elements:

R0 =
ab

µA
· ac

µV + g
· SM0

NB0

(

k

k + µA

)

.

The parts work together like this. The first factor repre-
sents the number of new crow infections caused by an in-
fectious mosquito. This is the number of bites per day per
mosquito a multiplied by the probability of the virus being
transmitted from an infectious mosquito to a crow b multi-
plied by the average number of days 1/µA a mosquito would
live.
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The second factor is the mirror image: the number of
new mosquito infections caused by an infectious crow. The
mosquito biting rate a is multiplied by the transmission prob-
ability from crows to mosquitoes c and by the average number
of days until the infectious crow either recovered (1/g) or died
(1/µV ).

The third factor represents, generally speaking, the num-
ber of infectious mosquitoes per crow. Specifically, it is the
number of initially susceptible mosquitoes SM0

that survive
the virus exposure period k/(k +µA) for every bird NB0

. To-
gether, these three elements give us the expression for the
total disease R0 from birds to birds (via mosquitoes) or from
mosquitoes to mosquitoes (via birds). Taking the square root
of the right hand side of the expression for R0 is a common
convention that gives the geometric mean R0 from bird to
mosquito and vice versa.

(If you’re looking at Figure 1 and wondering why the
mosquito birth rate and larval death rate don’t seem to show
up in R0, rest assured. They are accounted for by the equal-
ity LM0

= βMSM0
/(m+µL), a simplifying assumption in the

model that ensures a constant mosquito population.)
Our parameter values gave R0 greater than one, predicting

a disease outbreak. We were now able to return to our original
questions, namely, how could West Nile virus be controlled,
and how much control was needed?

One possible answer was obvious: if every mosquito and
bird were removed, the virus could not persist. But we were
hoping to find a more palatable answer. Examining the ex-
pression for R0, we found the ratio SM0

/NB0
in the numer-

ator, telling us that reducing the number of mosquitoes SM0

would reduce R0, but reducing the number of birds NB0

would not. In fact, reducing bird abundance would only make
things worse by increasing the value of R0. This was our first
lesson: reducing mosquitoes could help control the virus, but
removing birds would only increase the chances of an outbreak.

Would every mosquito have to be removed to prevent an
outbreak? This was our second lesson. Plotting a graph of R0
vs. SM0

/NB0
showed us that the virus could be controlled sim-

ply by reducing mosquito abundance, without requiring that
every last individual be eliminated (Figure 3).
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Initial no. of mosquitoes per bird (SM0
/NB0
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Figure 3: Plot of R0 vs. the initial number of mosquitoes
per bird SM0

/NB0
, showing that the mosquito population can

simply be reduced, and not completely eliminated, to bring
R0 below one and therefore prevent a West Nile outbreak.
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Figure 4: Plot of susceptible bird survival at the end of the
season SB vs. the initial number of mosquitoes per bird at
the beginning of the season SM0

/NB0
, showing how future

mosquito control efforts can be estimated from previous bird
mortality data.

This begged the final question of exactly how much
mosquito reduction was enough. It took us a while to work
this out, but eventually we came up with an indirect route
to the answer. It requires the following four steps, which are
illustrated in Figure 4.

1. Obtain from public health authorities an estimate of the
proportion of crows that survived the virus in the last
season. (These data are becoming increasingly avail-
able.)

2. Determine how many mosquitoes per crow M1 there
must have been at the start of the last season to cause
the observed bird mortality.

3. Determine the maximum allowable bird mortality for the
following season, and the corresponding maximum allow-
able initial number of mosquitoes per crow M2.

4. The ratio of these two mosquito-per-crow estimates,
M2/M1, gives the proportional reduction in mosquitoes
needed to control the virus in the next year.

This was our third lesson from the model, that we could
calculate the required amount of mosquito reduction. In fact,
we found that a 40–70% reduction in the New York City
mosquito population would have prevented the 2000 out-
break. There is, of course, a catch with this approach: the
virus has to have already caused the initial mortalities that
are used for subsequent control estimates. However, as the
virus continues to spread, bird mortality data are increas-
ingly available. Perhaps the experience of cities and regions
with the virus (and therefore with the data) can inform the
control programs in areas where a virus outbreak has not yet
occurred.

Like many research projects, this one raised more questions
than it answered. How fast could West Nile virus spread
across the continent and where would it go? How important
was climate in determining the survival of birds, mosquitoes,
and the virus? How would controlling the mosquitoes in an
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urban area influence the surrounding rural area? How was our
model similar or different compared to other models of similar
diseases? Was there anything more general that could be
learned about the epidemiology of vector-borne viruses? By
working with some additional collaborators, we have begun
to address these questions too.

In the meantime, I have an active interest in some very
local mosquito control. Earlier this evening, I noticed that
the spiders in the rocks behind my tent were making a killing,
literally. Mosquitoes were landing in their webs so fast the
spiders could hardly keep up. So now I’m starting to wonder
how many spiders I would need to keep in my tent to control
the mosquitoes. Or if not spiders, perhaps a bat would be
more efficient? Clearly, I need another model. I’ll have to
consult with my collaborators.

Appendix

Bird equations:

Susceptible
dSB

dt
= −abIM

SB

NB

Infectious
dIB

dt
= abIM

SB

NB
− µV IB − gIB

Removed
dRB

dt
= (g + µV )IB

Mosquito equations:

Larval
dLM

dt
= βM (SM + EM + IM ) − mLM − µLLM

Susceptible
dSM

dt
= −acSM

IB

NB
+ mLM − µASM

Exposed
dEM

dt
= acSM

IB

NB
− kEM − µAEM

Infectious
dIM

dt
= kEM − µAIM

Table 1: Ordinary differential equations (ODEs) represent-
ing the transmission of West Nile virus between birds and
mosquitoes. Each equation keeps track of the change in a
variable: the number of susceptible SB, infected IB, and re-
moved RB birds, and the number of larval LM , susceptible
SM , exposed EM , and infected IM female mosquitoes per
bird. Change in these variables is represented by parameters,
which are probabilities and rates. (Note that all variables are
indicated by capital letters, and all parameters by lower-case
letters.) These equations match up with the boxes and ar-
rows in Figure 1. To create your own numerical simulation of
this model, you will need to choose the initial conditions, or
values, for each variable. For a West Nile virus invasion, you
might start with all variables equal to zero, except for IB or
IM , which could be a very small positive number. Then you
can set up the ODEs to change the values of the variables in
each time step. What initial value of IB or IM do you need
in order for the infection to increase? How do your results
change if you allow birds to recover (i.e., set g > 0)?

Parameter Mean (range) Biological meaning

a 0.09 Mosquito daily per capita
(0.03–0.16) biting rate on birds

b 0.88 Probability per bite of West
(0.80–1.00) Nile virus being transmitted

by an infectious mosquito
biting a bird

c 0.16 Probability per bite of West
(0.02–0.24) West Nile virus being

transmitted by a mosquito
biting an infectious bird

βM 0.537 Mosquito daily per capita
(0.036–42.5) birth rate

m 0.068 Mosquito larva daily per
(0.051–0.093) capita maturation rate to

susceptible adults
µA 0.029 Adult mosquito daily per

(0.016–0.070) capita mortality rate
µL 1.191 Larval mosquito daily per

(0.213–16.9) capita mortality rate
k 0.106 Mosquito daily per capita

(0.087–0.125) transition rate from exposed
to infectious

µV 0.143 Bird daily per capita
(0.125–0.200) mortality rate from West

Nile virus
g 0 Bird daily per capita recovery

rate from West Nile virus

Table 2: Sample parameter values (and ranges) estimated
from the literature for the West Nile virus model shown in
Figure 1 and Table 1. The phrase per capita is a common
biological term meaning per individual.

Further Information

[1] This article is based on the paper: Wonham, M., T. de-
Camino-Beck and M. Lewis, 2004: An epidemiological
model for West Nile virus: Invasion analysis and control
applications. Proceedings of the Royal Society of London
B, 271, 501–507.

[2] Read more about this and other research at the Uni-
versity of Alberta’s Centre for Mathematical Biology:
http://www.math.ualberta.ca/∼mathbio/.

Q: How does a mathematician induce good behaviour in
his/her children?

A: “If I’ve told you n times, I’ve told you n + 1 times. . . .”

Q: What keeps a square from moving?
A: Square roots.
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What does Mathematics
Have to do with SARS?

Fred Brauer†

At least since the beginning of recorded history there have
been epidemics. One of the plagues that Moses brought down
upon Egypt described in the Book of Exodus was murrain,
an infectious cattle disease, and there are many other bib-
lical descriptions of epidemic outbreaks. The Black Death
(thought to be bubonic plague) spread from Asia through
Europe in several waves beginning in 1346, causing the death
of one-third of the population of Europe between 1346 and
1350 and recurring regularly in Europe for more than 300
years, notably as the Great Plague in London of 1665–1666.
Recurring invasions of cholera killed millions in India in the
19th century. The influenza epidemic of 1918–19 killed 20
million people overall and more than half a million in the
United States. More recently, the SARS epidemic of 2002–
3 caused worldwide concern and even more recently several
strains of avian flu have forced the killing of millions of birds
and worries about spread to humans.

Diseases that are endemic (always present), especially in
less developed countries, have effects that are probably less
widely known but may be of even more importance. Every
year millions of people die of measles, respiratory infections,
diarrhoea and other diseases that are easily treated and not
considered dangerous in the Western world. Diseases such as
malaria, typhus, cholera, schistosomiasis, and sleeping sick-
ness are endemic in many parts of the world. The effects of
high disease mortality on mean life span and of disease de-
bilitation and mortality on the economy in afflicted countries
are considerable. There are many useful practical conclusions
that have been drawn from models for endemic diseases. One
example was the possibility of eliminating smallpox worldwide
by vaccination; this was successfully achieved in 1977. How-
ever, to keep the mathematics relatively simple in this article,
we shall discuss only models for epidemic diseases. We hope
that the reader who finds this introduction to the modelling
of epidemics interesting may be motivated to study enough
additional mathematics to learn about models for endemic
diseases.

Perhaps the first epidemic to be examined from a modelling
point of view was the Great Plague in London. The Great
Plague killed about one-sixth of the population of London.
The village of Eyam near Sheffield, England suffered an out-
break of bubonic plague in 1665–1666 whose source is believed
to be the Great Plague. The Eyam plague was survived by
only 83 of an initial population of 350 persons. There were
actually two epidemics in Eyam and the first phase was sur-
vived by 261 persons. As detailed records were preserved and
as the community was persuaded to quarantine itself to try to
prevent the spread of disease to other communities, the sec-
ond phase of the epidemic in Eyam has been used as a case
study for modelling. The actual data for the Eyam epidemic
are remarkably close to the predictions from the simple model
as described below.

† Fred Brauer is a professor in the Department of Mathematics, Uni-
versity of British Columbia. His e-mail address is brauer@math.ubc.ca.

If there is no vaccine or treatment available for a disease,
the only control strategies available are isolation of individ-
uals diagnosed with the disease and quarantine of suspected
infectives. The rates of isolation and quarantine may be var-
ied, depending on decisions about the amount of effort to
invest in these strategies. It is rarely possible to compare
possible control strategies such as the division of efforts into
isolation and quarantine during an actual epidemic. For this
reason, mathematical modelling of epidemics is a promising
tool for comparison of possible strategies. If and when a vac-
cine is developed, models might indicate whether it is more
urgent to concentrate on vaccination or isolation.

One of the early triumphs of mathematical epidemiology
was the formulation in 1927 of a simple model by a pub-
lic health physician, W. O. Kermack, and a biochemist,
A. G. McKendrick, predicting behaviour similar to that
observed in countless epidemics, namely that diseases de-
velop suddenly and then disappear just as suddenly without
infecting the entire community. Kermack and McKendrick
considered the class S of individuals susceptible to the
disease, that is, not yet infected, and the class I of infected
individuals, assumed infective and able to spread the disease
by contact with susceptibles. In their model, individuals who
have been infected and then removed from the possibility
of being re-infected or of spreading infection are ignored.
Removal is carried out through isolation from the rest of the
population, immunization against infection, recovery from
the disease with immunity against reinfection, or through
death caused by the disease. These characterizations of
removed members are quite different from an epidemiological
perspective and of course also from a human point of view,
but are equivalent from a modelling point of view that takes
into account only the state of an individual with respect to
the disease.

c©Copyright 2004
Wieslaw Krawcewicz

10



The Kermack–McKendrick epidemic model makes very
simple assumptions about the rates of disease transmission
and removal. One of the assumptions is that the disease is
transmitted from one individual of a population to another
by direct contact. Thus it is not applicable to diseases that
are transmitted by a vector, that is, diseases transmitted back
and forth between two populations such as mosquitoes and
birds, as in West Nile virus. However, the ideas that go into
the formulation of the Kermack–McKendrick model are also
useful for the formulation of more complicated epidemic mod-
els.

The model contains only two parameters (the values of
which are to be determined from observed data) and could
be applied to many diseases transmitted by direct contact.
While a more detailed model might be a better description
of a specific disease, it would require more parameters. Since
data are often incomplete and inaccurate because of under-
reporting and mis-diagnosis at the beginning of an epidemic,
a simple model may give better predictions.

The Kermack–McKendrick model, which is a deterministic
compartmental model, is formulated in terms of the rates of
flow of members of the population between compartments.
There is a flow from S to I representing the rate of new in-
fections and a flow out of I representing the rate of recovery
or disease death. Mathematically, these rates of change are
described as derivatives with respect to time t. We will use
dS/dt to denote the derivative of S and dI/dt the derivative
of I, thinking of S and I as functions of time t. There are
techniques for calculating the derivative of a given function,
but our situation is that we want to set up equations for the
derivatives of the functions S and I and draw some conclu-
sions about the behaviour of the functions.

The specific assumptions about the flow rates are as follows:

(i) An average infective member of the population makes
contact sufficient to transmit infection with βN others
per unit time, where N represents total population size.

(ii) A fraction γ of infectives leave the infective class per unit
time.

(iii) There is no entry into or departure from the population,
except possibly through death from the disease.

According to (i), since the fraction of contacts by an infec-
tive with a susceptible, who can then transmit infection, is
S/N , the number of new infections in unit time per infective
is (βN)(S/N), giving a rate of new infections (βN)(S/N)I =
βSI. Fortuitously, we need not give an algebraic expression
for N since it cancels out of the final model. The hypothe-
sis (ii) says that the infective periods are exponentially dis-
tributed with mean infective period 1/γ. The hypothesis (iii)
really says that the time scale of the disease is much faster
than the time scale of births and deaths, so that demographic
effects on the population may be ignored.

When these assumptions are translated into mathematical
statements of the transition rates between classes, the result
is a pair of equations, called differential equations, for the
derivatives dS/dt and dI/dt. These equations are

dS

dt
= −βSI,

dI

dt
= (βS − γ)I.

In words, there is a rate of flow βSI of new infections out
of S and into I, and a rate of flow γI out of I.

Let us think of a population of initial size N into which a
small number of infectives is introduced, so that S(0) ≈ N ,
I(0) ≈ 0. If S(0) ≈ N < γ/β, then I decreases to zero

(no epidemic), while if N > γ/β, then I first increases to a
maximum attained when S = γ/β and then decreases to zero
(epidemic). The quantity βN/γ is a threshold quantity, called
the basic reproduction number and denoted by R0, which de-
termines whether there is an epidemic or not.

The definition of the basic reproduction number R0 is that
the basic reproduction number is the number of secondary in-
fections caused by a single infective introduced into a wholly
susceptible population of size N over the course of the in-
fection of this single infective. In this situation, an infective
makes βN contacts in unit time, all of which are with suscep-
tibles and thus produce new infections, and the mean infective
period is 1/γ; thus the basic reproduction number is βN/γ.

Initially, the number of infectives grows if and only if R0 >
1 because the equation for I may be approximated by

dI

dt
= (βN − γ)I

and thus dI/dt is positive when t = 0 if R0 > 1 and negative
if R0 < 1. If we could solve the above pair of differential equa-
tions for the functions S and I, we would have a prediction
of the numbers of susceptibles and infectives as functions of
time. Unfortunately, we cannot solve them analytically, but
there is some information that we can deduce directly from
the differential equations. Since dS/dt < 0, the function S(t)
is always decreasing. Since dI/dt < 0 if βS < γ, the func-
tion I(t) decreases after S reaches the value S = γ/β. Thus,
eventually I decreases to zero. If R0 < 1, then I(t) is al-
ways decreasing, which means that the initial infection does
not develop into an epidemic. On the other hand, if R0 > 1,
then I(t) increases initially until S(t) decreases to the value
S = γ/β and then decreases to zero, an epidemic.

There is a useful mathematical trick that will give us some
additional information about the behaviour of solutions. The
trick is that instead of thinking of S as a function of the time
t, we think of t as a function of S. Then I being a function
of t, which in turn is a function of S, makes I indirectly a
function of S. Calculus tells us that the derivative of I with
respect to S, which we denote by dI/dS, is given by the rule

dI

dS
=

dI

dt
dS

dt

,

which allows us to calculate

dI

dS
=

(βS − γ)I

−βSI

= −1 +
γ

βS
.

More calculus rules (techniques of integration) give I as a
function of S, namely

I = −S +
γ

β
lnS + c,

where c is a constant that we still need to determine. We use
the initial state of the population to do this. The constant c
is determined by the initial values S(0), I(0) of S and I,
respectively. With S(0) + I(0) = N we substitute the value
t = 0 into the solution to give

c = N − γ

β
lnS(0).

Thus
I = −S +

γ

β
lnS + N − γ

β
lnS(0).
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If we use the fact that I(t) → 0 as t → ∞ and let S∞ be the
limiting value of S(t) as t → ∞, we obtain

N − γ

β
lnS(0) = S∞ − γ

β
lnS∞,

the final size equation. In particular, this equation tells us
that S∞ > 0, so that some members of the population escape
the epidemic. This has frequently been observed in real life.
After an epidemic passes there are always some members of
the population that do not have disease antibodies, which
means that they are not immune and have not been infected.

It is convenient to depict the epidemic model by showing
the phase portrait, the orbit shown as a curve in the (S, I)
plane in Figure 1. Since S is a decreasing function of time,
the orbit is traversed from right to left. The vertical line in
Figure 1 has the equation S = γ/β, so that R0 > 1 if S(0)
is to the right of this line and R0 < 1 if S(0) is to the left
of this line. This shows graphically that if R0 > 1, there is
an epidemic with the number of infectives first increasing to
a maximum Imax and then decreasing to zero, while if R0 <
1, the infection dies out without spreading. The graph in
Figure 1 was actually drawn using a computer algebra system
(Maple) to solve the pair of differential equations numerically
with the parameter values

β = 0.0178, γ = 2.73, S(0) = 254, I(0) = 7, N = 261,

which correspond to the Eyam plague epidemic data. It is
worth noting that we may use these data to calculate Imax =
30.26 from the relation between I and S with S = γ/β. We
may also use the final size equation to estimate numerically
that S∞ = 76.05, again using a computer algebra system
(because the final size equation gives S∞ implicitly). We
should remember that since the actual observed results have
integer values, we should interpret the model as predicting
S∞ = 76, Imax = 30, compared with the observed values
S∞ = 83, Imax = 29.

S

I

γ
βS∞

Imax

Figure 1: The phase portrait.

The actual data for the Eyam epidemic are remarkably
close to the predictions of this very simple model. However,
the model is really too good to be true. Our model assumes
that infection is transmitted directly between people. While
this is possible, bubonic plague is transmitted mainly by rat
fleas. When an infected rat is bitten by a flea, the flea be-
comes extremely hungry and bites the host rat repeatedly,
spreading the infection in the rat. When the host rat dies

its fleas move on to other rats, spreading the disease further.
As the number of available rats decreases, the fleas move to
human hosts; this is how plague starts in a human popula-
tion (although the second phase of the epidemic may have
been the pneumonic form of bubonic plague, which can be
spread from person to person.) One of the main reasons for
the spread of plague from Asia into Europe was the passage of
many trading ships; in medieval times ships were invariably
infested with rats. An accurate model of plague transmission
would have to include flea and rat populations, as well as
movement in space. Such a model would be extremely com-
plicated and its predictions might well not be any closer to
observations than our simple unrealistic model.

In the village of Eyam the rector persuaded the entire com-
munity to quarantine itself to prevent the spread of disease
to other communities. One effect of this policy was to in-
crease the infection rate in the village by keeping fleas, rats,
and people in close contact with one another, and the mor-
tality rate from bubonic plague was much higher in Eyam
than in London. Further, the quarantine could do nothing to
prevent the travel of rats and thus did little to prevent the
spread of disease to other communities. One message this
suggests to mathematical modellers is that control strategies
based on false models may be harmful, and it is essential
to distinguish between assumptions that simplify but do not
alter the predicted effects substantially, and wrong assump-
tions that make an important difference, even if they seem to
fit observed data. To model an epidemic we must know the
transmission route, even if we can not yet identify a virus or
a method of transmission.

A real epidemic differs considerably from an idealized
model. One difference is that when it is realized that an
epidemic has begun, some individuals will modify their be-
haviour by avoiding crowds to reduce contacts and by being
more careful about hygiene to reduce the risk that a contact
will produce infection. Diagnosed infectives may be hospital-
ized, both for treatment and to isolate them from the rest
of the population. Contact tracing of diagnosed infectives
may identify people at risk of becoming infective, and these
may be quarantined (instructed to remain at home and avoid
contacts) and monitored so that they may be isolated imme-
diately if and when they become infective. Isolation may be
imperfect and there may be infections transmitted in hospi-
tals.

Soon after the beginning of the SARS epidemic of 2002–3
scientists began looking at the formulation of models to de-
scribe this epidemic. Usually, this work was carried out by
groups of scientists, including mathematicians, statisticians,
epidemiologists, and microbiologists. For example, a network
was set up by MITACS (Mathematics of Information Technol-
ogy and Complex Systems) including scientists from Health
Canada and universities across Canada. Some early obser-
vations were that the SARS epidemic was an example of a
general class of models, not a completely separate situation,
and that it was possible to formulate more general and more
inclusive models of Kermack–McKendrick type. For this rea-
son, the MITACS group, which was originally set up to study
SARS, became a group studying the modelling of infectious
diseases in general. Models have been developed that incor-
porate the additional features described above and have been
used to try to answer such questions as whether control of an
epidemic should concentrate on isolation of diagnosed infec-
tives or quarantine of contacts of infectives, or a combination
of both. For example, it appears that in an epidemic that
can be controlled by isolation, the additional gains from a
quarantine are slight. Of course, it is important to remem-
ber that a model is only a model and will not be an accurate
description of all aspects of an epidemic. Nevertheless, al-
though mathematics has not yet cured any diseases (except
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possibly math anxiety), it may help in controlling future epi-
demics. In the event of future outbreaks, you can expect that
epidemiologists and mathematical modellers will collaborate
to suggest the best control strategy. This kind of mathemati-
cal modelling requires some knowledge of calculus, differential
equations, and linear algebra. Further discussion of the above
epidemic model and more realistic models is contained in [1,
Chapter 7] and in [2, Section 6.6].
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There were three medieval kingdoms on the shores of a lake.
There was an island in the middle of the lake, over which the
kingdoms had been fighting for years. Finally, the three kings
decided that they would send their knights out to do battle,
and the winner would take the island.

The night before the battle, the knights and their squires
pitched camp and readied themselves for the fight. The first
kingdom had 12 knights, and each knight had five squires, all
of whom were busily polishing armor, brushing horses, and
cooking food. The second kingdom had twenty knights, and
each knight had 10 squires. Everyone at that camp was also
busy preparing for battle. At the camp of the third kingdom,
there was only one knight, with his squire. This squire took
a large pot and hung it from a looped rope in a tall tree. He
busied himself preparing the meal, while the knight polished
his own armor.

When the hour of the battle came, the three kingdoms sent
their squires out to fight (this was too trivial a matter for
the knights to join in). The battle raged, and when the dust
had cleared, the only person left was the lone squire from the
third kingdom, having defeated the squires from the other
two kingdoms, thus proving that the squire of the high pot
and noose is equal to the sum of the squires of the other two
sides.

c©Copyright 2004
Sidney Harris

A vector walks into two bars. . . and everyone yells, “Norm!”

If a math presentation was:

• Understood by everybody in the audience: it was a
worthless bunch of triviality.

• Only some people were able to follow: it was definitely
NOT my area.

• Nobody understood even the first definition: it was a
great talk—serious research leading to important results.

c©Copyright 2004
Sidney Harris
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Mathematical Modelling
of Recurrent Epidemics

David J. D. Earn†

One of the most famous examples of an epidemic of an in-
fectious disease in a human population is the Great Plague
of London, which took place in 1665–1666. We know quite a
lot about the progression of the Great Plague because weekly
bills of mortality from that time have been retained. A photo-
graph of such a bill is shown in Figure 1. Note that the report
indicates that the number of deaths from plague (5533) was
more than 37 times the number of births (146) in the week in
question, and that wasn’t the worst week! (As Fred Brauer
notes in his article in this issue, an even worse plague occurred
in the 14th century, but no detailed records of that epidemic
are available.)

Figure 1: A photograph of a bill of mortality for the city of
London, England, for the week of 26 September to 3 October
1665.

† David J. D. Earn is a professor in the Department of
Mathematics & Statistics at McMaster University. His web site is
http://www.math.mcmaster.ca/earn.

Putting together the weekly counts of plague deaths from
all the relevant mortality bills, we can obtain the epidemic
curve for the Great Plague, which I’ve plotted in the top
left panel of Figure 2. The characteristic exponential rise,
turnover and decline is precisely the pattern predicted by
the classic susceptible-infective-recovered (SIR) model of Ker-
mack and McKendrick [1] that I describe below (and Fred
Brauer also discusses in his article). While this encourages
us to think that mathematical modelling can help us un-
derstand epidemics, some detailed features of the epidemic
curve are not predicted by the simple SIR model. For ex-
ample, the model does not explain the jagged features in the
plotted curve (and there would be many more small ups and
downs if we had a record of daily rather than weekly deaths).
However, with some considerable mathematical effort, these
“fine details” can be accounted for by replacing the differ-
ential equations of Kermack and McKendrick with equations
that include stochastic (i.e., random) processes [2]. We can
then congratulate ourselves for our modelling success. . . until
we look at more data.

The bottom left panel of Figure 2 shows weekly mortal-
ity from plague in London over a period of 70 years. The
Great Plague is the rightmost (and highest) peak in the plot.
You can see that on a longer timescale, there was a com-
plex pattern of plague epidemics, including extinctions and
re-emergences. This cannot be explained by the basic SIR
model (even if we reformulate it using stochastic processes).
The trouble is likely that we have left out a key biological
fact: there is a reservoir of plague in rodents, so it can persist
for years, unnoticed by humans, and then re-emerge suddenly
and explosively. By including the rodents and aspects of spa-
tial spread in a mathematical model, it has recently been
possible to make sense of the pattern of 17th century plague
epidemics in London [3]. Nevertheless, some debate contin-
ues as to whether all those plagues were really caused by the
same pathogenic organism.

A less contentious example is given by epidemics of measles,
which are definitely caused by a well-known virus that infects
the respiratory tract in humans and is transmitted by air-
borne particles. Measles gives rise to characteristic red spots
that are easily identifiable by physicians who have seen many
cases, and parents are very likely to take their children to a
doctor when such spots are noticed. Consequently, the major-
ity of measles cases in developed countries end up in the office
of a doctor (who, in many countries, is required to report ob-
served measles cases to a central body). The result is that
the quality of reported measles case data is unusually good,
and it has therefore stimulated a lot of work in mathematical
modelling of epidemics.

An epidemic curve for measles in New York City in 1962
is shown in the top right panel of Figure 2. The period
shown is 17 months, exactly the same length of time shown
for the Great Plague of London in the top left panel. The
1962 measles epidemic in New York took off more slowly and
lasted longer then the Great Plague of 1665. Can mathemat-
ical models help us understand what might have caused these
differences?

Using the same notation as Fred Brauer uses in his article
in this issue, the basic SIR model is

dS

dt
= −βSI, (1)

dI

dt
= βSI − γI. (2)

Here, S and I denote the numbers of individuals that are sus-
ceptible and infectious, respectively. The derivatives dS/dt
and dI/dt denote the rates of change of S and I with
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Figure 2: Epidemic curves for plague in London (left panels)
and measles in New York City (right panels). For plague,
the (red) curves show the number of deaths reported each
week. For measles, the (blue) curves show the number of
cases reported each month. In the top panels, the small ticks
on the time axis occur at monthly intervals.

respect to time. The mean transmission rate is β and the
mean recovery rate is γ (so the mean infectious period is
1/γ). As Fred Brauer discusses, if the total population size
is N , and everyone is initially susceptible (S(0) = N), then a
newly introduced infected individual can be expected to in-
fect R0 = βN/γ individuals (the basic reproduction number
R0 is also discussed at length by Marjorie Wonham in her
article in this issue). You can find a discussion of the SIR
model together with the mathematical ideas it is based on in
some introductory calculus textbooks (see, for example, [4]).

As Fred Brauer notes, we cannot solve the SIR equations
and obtain formulae for the functions S(t) and I(t). Yet the
epidemic curves that we are trying to explain are essentially
given by I(t), so it is hard to proceed without it! Fortu-
nately, computers come to our rescue. Rather than seeking
an explicit formula for I(t), we can instead obtain a numer-
ical approximation of the solution. One simple approach is
Euler’s method, which we can implement as follows (using a
spreadsheet or any standard programming language).

The derivative dS/dt is defined as the ratio of the change
in S in a given short time interval dt, divided by that time
interval, in the limit that dt approaches zero. Dealing with
that limit is tricky, but at any time t we can approximate the
derivative by writing dS = S(t + dt) − S(t) and solving for
the number of susceptibles at a time t + dt in the future,

S(t + dt) = S(t) − βS(t)I(t)dt . (3)

Similarly, we can approximate the number of infectives at
time t + dt as

I(t + dt) = I(t) + βS(t)I(t)dt− γI(t)dt . (4)

Equations (3) and (4) together provide a scheme for approx-
imating solutions of the basic SIR model. To implement this
scheme on a computer, you need to decide on a suitable small
time interval dt. If you want to try this, I’d suggest taking dt
to be one tenth of a day. I should point out that I am being
extremely cavalier in suggesting the above method. Do try
this at home, but be forewarned that you can easily gener-
ate garbage using this simple approach if you’re not careful.
(To avoid potential confusion, include a line in your program

that checks that S(t) ≥ 0 and I(t) ≥ 0 at all times. Another
important check is to repeat your calculations using a much
smaller dt and make sure your results don’t change.)

In order for your computer to carry out the calculations
specified by equations (3) and (4), you need to tell it the
parameter values (β and γ, or R0, N and γ) and initial con-
ditions (S(0) and I(0)). For measles, estimates that are inde-
pendent of the case report data that we’re trying to explain
indicate that the mean infectious period is 1/γ ∼ 5 days and
the basic reproduction number is R0 ∼ 18 [5]. The popula-
tion of New York City in 1960 was N = 7 781 984. If we now
assume one infectious individual came to New York before the
epidemic of 1962 (I(0) = 1), and that everyone in the city was
susceptible (S(0) = N), then we have enough information to
let the computer calculate I(t). Doing so yields the epidemic
curve shown in the top panel of Figure 3, which does not look
much like the real data for the 1962 epidemic in New York.
So is there something wrong with our model?

No, but there is something very wrong with our initial con-
ditions. The bottom right panel of Figure 2 shows reported
measles cases in New York City for a 36 year period, the end
of which includes the 1962 epidemic. Evidently, measles epi-
demics had been occurring in New York for decades with no
sign of extinction of the virus. In late 1961, most of New
York’s population had already had measles and was already
immune, and the epidemic certainly didn’t start because one
infectious individual came to the city. The assumptions that
I(0) = 1 and S(0) = N are ridiculous. If, instead, we take
I(0) = 123 · (5/30) (the number of reported cases in Septem-
ber 1961 times the infectious period as a proportion of the
length of the month) and S(0) = 0.065N , then we obtain the
epidemic curve plotted in the middle panel of Figure 3, which
is much more like the observed epidemic curve of Figure 2
(top right panel). This is progress—we have a model that
can explain a single measles epidemic in New York City—but
the model cannot explain the recurrent epidemics observed in
the bottom right panel of Figure 2. This is not because we
still don’t have exactly the right parameter values and initial
conditions: no parameter values or initial conditions lead to
recurrent epidemics in this simple model. So, it would seem,
there must be some essential biological mechanism that we
have not included in our model. What might that be?

Figure 3: Epidemic curves for measles in New York City,
generated by the basic SIR model. The curves show the
number of infectives I(t) at time t. In the top two panels,
the small ticks on the time axis occur at monthly intervals.
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Let’s think about why a second epidemic cannot occur in
the model we’ve discussed so far. The characteristic turnover
and decline of an epidemic curve occurs because the pathogen
is running out of susceptible individuals to infect. To stimu-
late a second epidemic, there must be a source of susceptible
individuals. For measles, that source cannot be previously
infected people, because recovered individuals retain lifelong
immunity to the virus. Newborns typically acquire immunity
from their mothers, but this wanes after a few months. So
births can provide the source we’re looking for.

If we expand the SIR model to include B births per unit
time and a natural mortality rate µ (per capita), then our
equations become

dS

dt
= B − βSI − µS , (5)

dI

dt
= βSI − γI − µI . (6)

The timescale for substantial changes in birth rates (decades)
is generally much longer than a measles epidemic (a few
months), so we’ll assume that the population size is constant
(thus B = µN , so there is really only one new parameter
in the above equations; we can take it to be B). As before,
we can use Euler’s trick to convert the equations above into
a scheme that enables a computer to generate approximate
solutions. An example is shown in the bottom panel of Fig-
ure 3, where I have taken the birth rate to be B = 126 372
per year (the number of births in New York City in 1928, the
first year for which we have data). The rest of the parameters
and initial conditions are as in the middle panel of the figure.

Again we seem to be making progress. We are now getting
recurrent epidemics, but the oscillations in the numbers of
cases over time damp out, eventually reaching an equilibrium.
While the graph is just an approximate solution for a single
set of initial conditions, it can actually be proved that all
initial conditions with I(0) > 0 yield solutions that converge
onto this equilibrium. So we still don’t have a model that can
explain the real oscillations in measles incidence from 1928 to
1964, which showed no evidence of damping out. Back to the
drawing board?

Don’t give up. We’ve nearly cracked it. So far, we have
been assuming implicitly that the transmission rate β (or,
equivalently, the basic reproduction number R0) is simply a
constant and, in particular, that it does not change in time.
Let’s think about that assumption. The transmission rate
is really the product of the rate of contact among individu-
als and the probability that a susceptible individual who is
contacted by an infectious individual will become infected.
But the contact rate is not constant throughout the year. To
see that, consider the fact that in the absence of vaccination,
the average age at which a person is infected with measles
is about five years [5]; hence most susceptibles are children.
Children are in closer contact when school is in session, so the
transmission rate varies seasonally. A crude approximation of
this seasonality is to assume that β varies sinusoidally,

β(t) = β0(1 + α cos 2πt) . (7)

Here, β0 is the mean transmission rate, α is the amplitude of
seasonal variation and the time t is assumed to be measured
in years. If, as above, β is assumed to be a periodic function
(with a period of one year) then the SIR model is said to be
seasonally forced. We can still use Euler’s trick to solve the
equations approximately, and I encourage you to do that us-
ing a computer for various values of the seasonal amplitude α
(you must have 0 ≤ α ≤ 1: why?).

You might think that seasonal forcing is just a minor tweak
of the model, but in fact this forcing has an enormous im-
pact on the epidemic dynamics that the model predicts. If
you’ve taken Physics and studied the forced pendulum, then
you might already have some intuition for this. A pendulum
with some friction will exhibit damped oscillations and settle
down to an equilibrium. But if you tap the pendulum with a
hammer periodically then it will never settle down and it can
exhibit quite an exotic range of behaviours including chaotic
dynamics [6] (oscillations that look random). Similarly com-
plex dynamics can occur in the seasonally forced SIR model.

Most importantly, with seasonal forcing, the SIR model
displays undamped oscillations similar to the patterns seen
in the real measles case reports. But we are left with an-
other puzzle. If you look carefully at the New York City
measles reports in the bottom right panel of Figure 2 you’ll
see that before about 1945 the epidemics were fairly irregular,
whereas after 1945 they followed an almost perfect two-year
cycle. While the SIR model can generate both irregular dy-
namics and two-year cycles, this happens for different param-
eter values, not for a single solution of the equations. How
can we explain changes over time in the pattern of measles
epidemics?

Once again, the missing ingredient in the model is a chang-
ing parameter value. This time it is the birth rate B, which
is not really constant. Birth rates fluctuate seasonally, but to
such a small extent that this effect is negligible. What turns
out to be more important is the much slower changes that
occur in the average birth rate over decades. For example,
in New York City the birth rate was much lower during the
1930s (the “Great Depression”) than after 1945 (the “baby
boom”) and this difference accounts for the very different pat-
terns of measles epidemics in New York City during these two
time periods [7].

A little more analysis of the SIR model is very useful. It is
possible to prove that changes in the birth rate have exactly
the same effect on disease dynamics as changes of the same
relative magnitude in the transmission rate or the proportion
of the population that is vaccinated [7]. This equivalence
makes it possible to explain historical case report data for a
variety of infectious diseases in many different cities [8].

One thing that you may have picked up from this article is
that successful mathematical modelling of biological systems
tends to proceed in steps. We begin with the simplest sensi-
ble model and try to discover everything we can about it. If
the simplest model cannot explain the phenomenon we’re try-
ing to understand, then we add more biological detail to the
model, and it’s best to do this in steps because we are then
more likely to be able to determine which biological features
have the greatest impact on the behaviour of the model.

In the particular case of mathematical epidemiology, we are
lucky that medical and public health personnel have painstak-
ingly conducted surveillance of infectious diseases for cen-
turies. This has created an enormous wealth of valuable
data with which to test hypotheses about disease spread us-
ing mathematical models, making this a very exciting subject
for research in applied mathematics.
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Practical Further Reading Suggestions from
the Editors

The SIR Model for Spread of Disease web site at
http://www.math.duke.edu/education/ccp/materials/di
ffcalc/sir/contents.html includes Maple, Mathematica
and Matlab files.

A spreadsheet program that is easy to use is available from
http://ugrad.math.ubc.ca:8099/mathsheet/index.html.

Q: What is a mathematician’s pick when faced with the
choice between poutine and eternal bliss in the afterlife?

A: Poutine! Because nothing is better than eternal bliss in
the afterlife, and poutine is better than nothing.

Q: What is a topologist?
A: A person who cannot tell a doughnut from a coffee mug.

Q: Why did the mathematician have trouble computing
A−1A?

A: Because he was having an identity crisis.

Absurdity of zero: there is no such a thing as nothing.

Q: What is yellow, sour, and equivalent to the axiom of
choice?

A: Zorn’s lemon. . . .

c©Copyright 2004
Sidney Harris

Q: What is normed, complete, and yellow?
A: A Bananach space. . . .

c©Copyright 2004
Sidney Harris

17



Cid, Bru, One
Jeremy Tatum†

One of the “Math Jokes” in the September, 2003 issue de-
clared that there are 10 kinds of mathematicians: those who
can think in binary and those who can’t.

At one time I was very definitely in the latter category—I
couldn’t add one and one. Looking back, I realize that one
of my difficulties was that I didn’t know of any easy names
for numbers when written in binary form. For example, how
do you pronounce the binary number 10 in the joke above?
If you pronounced it “ten,” you missed the point of the joke!

So—what are binary numbers? We are all familiar with the
decimal system, in which we have ten single-digit numbers:
0, 1, 2, . . . 9. If we want to write numbers greater than 9, we
have to use two digits. Thus: 10. This enables us to write
numbers as high as 99. If we want to write numbers greater
than 99, we have to use three digits. Thus: 100. The number
100 is 102 and the number 1 000 is 103, and so on. We are
very familiar with all of that.

In the binary system (which is what computers use, even if
we are unaware of it), we have only two “digits”—or “bits” as
they are called in the binary system. These are 0 and 1. If we
want to write numbers greater than 1, we have to use two bits,
namely 10. This number is the binary equivalent of “two.”
So now you can go back and read the joke, and perhaps have
a good chuckle over it. The binary number 11 is equivalent to
“three”—and, if we want to write numbers greater than this,
we have to use three bits. Thus 100 is the binary equivalent of
“four.” Here are the binary representations of the first eleven
numbers:

zero 0
one 1
two 1 0
three 1 1
four 1 0 0
five 1 0 1
six 1 1 0
seven 1 1 1
eight 1 0 0 0
nine 1 0 0 1
ten 1 0 1 0

You will see that 100 means 22, 1000 means 23, and so on.
Now I am going to ask you to add together five binary

numbers, as follows:

1 0 1 1 0 1
1 1 1 0 1 1
1 1 0 1 1 0
1 1 0 0 1 1
1 0 0 1 1 1

† Jeremy Tatum is a former professor in the Department of Physics
and Astronomy of the University of Victoria. His e-mail address is
universe@uvvm.uvic.ca.

If you are at all like me when I first encountered an appar-
ently simple problem like this, you may find this surprisingly
difficult. Perhaps you will at first try to convert each number
into decimal form. The binary number 101 101, for example,
is 45 when written in decimal. You might add them all up
in decimal form, and then try to convert the decimal number
back into binary form. Or you might try to add the numbers
as binary numbers column by column in the usual way for
adding numbers. Thus 1 + 1 is 10; and 10 and 1 is 11; and
11 and 1 is—oh, dear, I’ve lost count and I’m not quite sure
what to do next. In case you want to persist, the answer is
11 111 000.

Many years ago I read an article (I’m afraid I cannot re-
member where or by whom—if anyone knows, please tell me)
in which the author proposed names for numbers written in
binary notation. To some it will sound like risible gibberish—
yet I have found it surprisingly helpful for doing calculations
in binary. Perhaps it is well known and in widespread use—
though I have never met anyone who has heard of it. The
difficulty I always had in thinking in binary was that I had
no names for binary numbers such as 10, 100, 1000. The
forgotten author supplied the key by giving names to these
binary numbers.

As I recall, the powers of two were given names as follows:

1 one
1 0 bru

1 0 0 cid
1 0 0 0 dag

1 0 0 0 0 bru dag
1 0 0 0 0 0 cid dag

1 0 0 0 0 0 0 hi

Examples of some other numbers:

1 1 bru one
1 0 1 cid one

1 1 1 0 dag, cid bru
1 0 1 0 1 bru dag, cid one

1 1 0 0 1 1 cid bru dag, bru one

In addition to these names, I have also found it helpful to
typeset long numbers in groups of three, with a small gap
between each group, as is also standard typesetting practice
with large decimal numbers.

Now let’s see how it works for adding the above five num-
bers. Although I don’t need to, I have, by way of further
example, “pronounced” their “names” to the right of each.

1 0 1 1 0 1 cid one dag, cid one
1 1 1 0 1 1 cid bru one dag, bru one
1 1 0 1 1 0 cid bru dag, cid bru
1 1 0 0 1 1 cid bru dag, bru one
1 0 0 1 1 1 cid dag, cid bru one

1 1 1 1 1 0 0 0 bru hi, cid bru dag

The only way to see how this works is to mumble things
like “one, bru, cid, dag” under your breath while doing the
addition. I’m going to try and transcribe my mumblings to
paper as I start by adding up the numbers in the right-hand
(least significant) column, and then move on to the next col-
umn to the left. It goes something like this: “One, bru, bru
one, cid; that’s zero, and bru to carry to the next column.
Now the next column. Bru, bru one, cid, cid one, cid bru;
that’s zero, and bru one to carry to the next column.”

. . .And so on and so on!

18



It’s hard to describe the process in writing, but try a bit of
mumbling yourself for a while and it will either become clear
and quick very soon, or you’ll collapse into helpless laughter.

How does Multiplication work? For example, try 11 011 ×
1 101. That is, what is bru one dag, bru one times dag, cid
one? In fact the multiplication is the easy part. You can just
set it out as an ordinary long multiplication:

1 1 0 1 1
× 1 1 0 1

1 1 0 1 1
1 1 0 1 1 0 0

1 1 0 1 1 0 0 0

That part was easy. Now you have to add the last three
binary numbers—and I’ll leave you to do that in the same
way as before. The answer is 101 011 111.

Indeed the one, bru, cid nomenclature is really only use-
ful in the addition of several or many binary numbers. In
a subtraction problem, you just have two numbers to deal
with—the number you start with, and the subtrahend (the
number you subtract); bru, cid and dag are then of little
help. I expect that you can subtract 1 001 from 10 101 to get
1 010 with little difficulty.

To appreciate how helpful bru, cid and dag can be, there is
no substitute for setting yourself several long addition prob-
lems in binary numbers and adding them when mumbling bru,
cid dag under your breath. At first it will seem ridiculous—
but after a short while you will soon find yourself adding long
strings of binary numbers accurately and with great speed
and confidence.

You may remember that Alice had some difficulty with Ad-
dition:

“Can you do Addition?” the White Queen asked. “What’s
one and one and one and one and one and one and one and
one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.1

Alice, of course, should promptly have answered: “Dag bru.”

Differential equation of human life: equal laws for every-
body, but better initial conditions for some of us.

Q: What is the code name of a spy mathematician?
A: Sπ

1 Quoted from Alice’s Adventures in Wonderland and Through the

Looking Glass by Lewis Carroll.

The chef instructs his apprentice: “You take two thirds of
water, one third of cream, and one third of broth. . . ”

The apprentice interrupts: “But that makes four thirds
already!”

“Well—then you just take a larger pot!”

c©Copyright 2004
Sidney Harris

Q: Why didn’t the permutation ever get hired for any jobs
in the big city?

A: Because he didn’t commute.

Math is free but you need to download it yourself.

Marriage Math: one plus one forever.

c©Copyright 2004
Sidney Harris
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Platonic Solids
and the Golden Ratio∗

Klaus Hoechsmann†

The best known of the Platonic Solids is certainly the cube:
all its faces are the same (namely congruent squares) and at
every “vertex,” i.e., corner-point, the same number of them
meet (namely three). In the customary xyz-coordinate sys-
tem, the vertices could be the eight points (±w,±w,±w), and
the cube then has side-length 2w.

The six midpoints of the faces are (±w, 0, 0), (0,±w, 0),
(0, 0,±w). If we connect each of them to its two neighbours—
assuming we are inside the cube to do this—we get another
Platonic Solid, called the regular octahedron, because it has
eight faces, which obviously form equilateral triangles. If we
were curious enough to connect the mid-points of theses trian-
gular faces, we’d find—guess what?—another (smaller) cube.
This is why cube and octahedron are said to be dual to each
other.

The simplest Platonic Solid is the regular tetrahedron. It
answers the question sometimes found on IQ tests: “how can
you arrange six matches so as to form four equilateral trian-
gles?” If we try to play the duality game with it, we just get
a smaller tetrahedron pointing the other way. Thus, in some
sense, the tetrahedron is self-dual.

The most handsome Platonic Solids are the regular icosa-
hedron, with twenty triangular faces (five around each of the
twelve vertices) and its dual, the regular dodecahedron. These
are the ones we shall study. They and their connection to
the Golden Ratio are the smashing finale of Euclid’s famous
“Elements,” and have fascinated countless people before and
since. Leonardo da Vinci, for instance, took the trouble to
produce attractive drawings of them for Luca Pacioli’s book
“De divina proportione.” Luca was his friend and mathemat-
ical tutor.

Luca’s “divine proportion” is, of course the Golden Ratio.
Numerically it can be best described as the elusive limit of
successive quotients in the Fibonacci sequence. Geometri-
cally, a u × v rectangle is golden, if you can chop off a v × v
square (v < u) and wind up with a residual rectangle similar
to the original. If you think about it, this says:

v

u
=

u

v
− 1 .

Even if you don’t have time to think about it, we’ll take that
as the definition of the Golden Ratio. Whether this illustrious
title should go to u/v or v/u is a matter of taste.

To get the most out of this story, you will need some card-
board and string to make the model shown on the opposite
page. The three rectangles should measure 2 × 5 toes, where
“toe” is a newly invented unit that can be 1 inch, 2 or 3
centimetres, or anything else—depending on the thickness of

∗ This article originally appeared in Vector (the Journal of the BC
Association of Math Teachers) and it is reprinted with permission.

† Klaus Hoechsmann is a Professor Emeritus at the Uni-
versity of British Columbia in Vancouver. You can find more
information about the author and other interesting articles at
http://www.math.ubc.ca/∼hoek/Teaching/teaching.html.

your cardboard (for the rigidity of the model). We imagine
a z axis and a y axis going lengthwise through the middle of
the vertical and the horizontal rectangles, respectively. The
x axis will be pointing right at you through the middle of
the third rectangle. Each rectangle has a 2 toe slit to allow
another rectangle to be stuck through. One of them needs
an extra cut from its edge to its slit; otherwise, you won’t be
able to assemble them as shown.

The triangles ABC and CDE are equilateral. To see this,
imagine the rectangles getting slimmer and slimmer, v shrink-
ing toward zero and C wandering toward the z axis: at the
end, ABC and CDE have morphed into the faces of a regular
octahedron. As v expands again, their sides shrink in perfect
unison, thus always remaining equal. For brevity, let these
equilateral triangles be called “trigons.” There are eight of
them in all. Can you see them?

A

B

C

D

E

F

P Q

Figure 1: Cardboard-and-string skeletons for various attrac-
tive solids.

For the time being, let us forget them and concentrate on
triangles like BCD, which we shall call “darts” for short.
Each of our twelve vertices is the tip of exactly one dart, which
is isosceles—sharing its legs with two neighbouring trigons,
and sporting an acute vertex angle because u is greater than
v (remember?). Altogether we have a polyhedron with twenty
faces: twelve darts plus eight trigons.

Our first plan of action is to widen the darts until they,
too, are equilateral; obviously there must be a stage where
this occurs—we just need to find it. When we do, the only
way to distinguish darts and trigons is indirectly, for instance,
by saying that the midpoints of the latter always lie on space
diagonals.

The Regular Icosahedron

To make the darts equilateral, we only have to tune u and
v so as to make BD and DC equal in length. By symmetry,
all the other lengths will then become equal as well. Now,
BD has length 2v, but for DC we have to do more work.
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The vector pushing C to D has the coordinates [u − v, v, u],
hence the square of its length is (u− v)2 + v2 + u2, using the
Pythagorean Theorem twice (that’s how you find distances
in three dimensions). Equating this to 4v2, the length of BD
squared, we get 2v2 = 2u2 − 2uv. Now divide by 2uv and
stand back:

v

u
=

u

v
− 1 ,

the signature of the Golden Ratio. In other words, our (ad-
justed) model yields a regular icosahedron, if and only if it is
made up of golden rectangles.

For later use, let us square the golden signature u/v−v/u =
1, to conclude u2/v2 + v2/u2 = 3. Also notice the five (now)
equilateral triangles CFA, CAB, CBD, CDE, and CEF
surrounding the point C. Cuts made through their midpoints,
parallel to the side opposite C, would show C as the tip of
a pentagonal pyramid with equilateral sides (do you see?).
Hence those midpoints,too, form a regular planar pentagon.
All twelve of our vertices are ringed by three such pentagons:
these are the faces of the dual dodecahedron.

We have deliberately kept our initial model asymmetric in
order to be able to distinguish darts and trigons, but if you
have enough energy (or help), you may wish to rebuild it with
approximately golden rectangles, say 144 by 89 millimetres,
or (if cardboard is in short supply) 89 by 55. These num-
bers are borrowed from the Fibonacci sequence: the exact
Golden Ratio exists only in our minds (that’s why we say it
is “irrational”).

The Circumscribed Sphere

Before we get into the handicrafts, let us try to picture
what we are doing. For this phase, it would be good to have
a geographical globe, showing the oceans and countries of our
planet. We would orient it in xyz-space so that the positive z
axis passes through the North Pole, the xy plane contains the
Equator, and the positive x axis pierces the meridian of zero
longitude (defined by Greenwich, England). This forces the
negative y axis to pass through the Galapagos Islands (90◦

West, on the Equator).
Now we imagine our three rectangles inside that globe,

their twelve corners (“vertices”) just touching its surface from
the inside. The coordinates of these vertices are (0,±u,±v),
(±v, 0,±u), (±u,±v, 0), where u and v will eventually be al-
lowed to vary, but always with u greater than v. Pythagoras
says u2 + v2 = r2, where r is the radius of the globe.

To get oriented, let us begin looking at the five points vis-
ible from a satellite hovering high above Greenwich. We see
A = (0,−u, v) near Campeche, Mexico, B = (u,−v, 0) about
half-way between Brazil and Ghana, C = (v, 0, u) near the
Norwegian island of Jan Mayen, D = (u, v, 0) just east of
where the Congo River crosses the Equator, and E = (0, u, v)
in the Gulf of Bengal, near Calcutta. These five points form
a kind of distorted W whose sides slope very gently while the
central peak is unusually tall.

For our next adventure, we introduce the eight new points
(±w,±w,±w), vertices of a cube just touching the inside of
the globe. Pythagoras reminds us that 3w2 = u2+v2. We are
most interested in P = (w,−w, w) and Q = (w, w, w) because
they are the closest to the dart BCD containing Greenwich.
In geographical terms, P is about half-way between Florida
and the Azores, while Q lies near Baghdad. After this quick
survey, we are ready to go about varying u and v again so as to
make an even more amazing model. To include the new points
in it, glue eight small paper cubes into the corners of the
original 3-D “cross” made of 2×5 toe rectangles. Pythagoras
says: the side-lengths of these cubes should be just under 1.6
toes (how does he know?).

The Regular Dodecahedron

We release u and v from their golden bondage and let them
vary again. As promised, P and Q now step into the game,
and we consider the five points B, P , C, Q, D. Can we
arrange for

1) the five lengths BP , PC, CQ, QD, DB to be equal, and

2) the five points B, P , C, Q, D to lie in the same plane?

If we manage to adjust u and v so that QD = DB (= 2v),
then BP = BD follows by symmetry. Moreover, QC bears
the same relation to CF that QD bears to DB, and therefore
will also have the length 2v. Likewise for PC, CF , and PD.
In other words, (1) will follow from the single equality 2v =
QD.

Again squaring both sides, we get 4v2 = (w − u)2 + (w −
v)2 + w2. Remembering that 3w2 = u2 + v2 (= r2), and
dividing by 2, our equation becomes

2v2 = u2 + v2 − uw − vw,

or
(u + v)w = u2 − v2.

Now we can divide by (u + v) to get w = u − v, and on
squaring, we breathlessly arrive at

w2 = u2 + v2 − 2uv = 3w2 − 2uv

and finally uv = w2. Now what?
Now we divide u2+v2 = 3w2 by our latest result (uv = w2)

and stand back in awe:

v

u
+

u

v
= 3,

the signature of the of the Square of the Golden Ratio, as
we observed near the end of our icosahedral story (remember
that these are not the same values for u and v).

This clears up Question (1), but what about (2)? It follows
from the fact that regular dodecahedra, with flat pentagonal
faces, are the duals of regular icosahedra. We enlarge such a
dual to fit just inside the globe, and label the vertices of one
of its faces B′, P ′, C ′, Q′ , D’ (not using the unadorned B, P ,
C, Q, D in order to avoid unwarranted conclusions). Then we
put B′ and D′ on the Equator so that the Greenwich Meridian
passes right through the middle between them, and C ′ lies in
the Northern Hemisphere. As we have seen in connection with
the icosahedron, the point Q′ then lies above the midpoint of
a trigon, hence on a space diagonal. The lengths B′D′ and
D′Q′ are given as equal, and our calculations show that there
is only one way this can happen: the points BPCQD must
coincide with their “primed” counterparts.

To make an actual cardboard model, we could again
steal numbers from the Fibonacci sequence, going two
steps down this time, say, using 144 and 55 (do you see
why?). But now, the paper cubes are essential, and we con-
nect their outward vertices with the bases of the former darts.

Seeing the golden rectangles, Fibonacci numbers, and pen-
tagons, regular readers of this magazine will suspect (cor-
rectly) that this is yet another digression from the story of
the Rose and the Nautilus. While the last one was caused
by people hollering for ratios, the present one tries to refute
charges that we are deliberately avoiding algebra. In the next
issue, the main story will be back on track, we hope.
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Kolmogorov, Turbulence,

and British Columbia
Bob Stewart† and Chris Garrett∗

We were delighted to read Alexander Melnikov’s splendid
account, in the last issue of π in the Sky , of the life of the great
Russian mathematician Alexander Nikolaevich Kolmogorov.
The main purpose of this short article is to describe how a
study in B.C. waters provided the first and strongest evidence
in support of Kolmogorov’s famous 1941 “Two-Thirds Law.”

As nicely summarised by Melnikov, this law predicts that
in every turbulent flow (such as we see in rushing rivers or
vigorously boiling pans of water, for example), “the mean
square difference of the velocities at two points a distance r
apart is proportional to r2/3 (Figure 1).” Quite apart from
the elegance of this result, it provides a key to understand-
ing and predicting how pollutants and other substances are
dispersed.

Explaining where this prediction comes from provides an
opportunity to introduce the powerful technique of dimen-
sional analysis. This really just says that we’d better get
the units right. In the present case, we suppose that the
mean square velocity difference depends on the separation
r and something characterizing the strength of the turbu-
lence. Now in turbulent flow the factor that matters most is
the rate of transfer of energy from large eddies, via eddies of
ever-decreasing size, down to very small eddies that dissipate
the energy through the action of viscous forces. This energy
transfer rate per unit mass, called the energy dissipation rate,
has units m2s−3 (though we could use other units than a me-
tre for length and a second for time). Denoting the energy
dissipation rate by ǫ, and arguing that the mean square veloc-
ity difference depends only on this and the separation r, then
the mean square velocity difference must be proportional to
ǫ2/3r2/3 in order to have units of m2s−2.

A closely associated result, also derived by dimensional
reasoning, is that the kinetic energy spectrum, i.e. the dis-
tribution of energy over different scales, is proportional to
ǫ2/3k−5/3 [5]. Here k is something called the wavenumber,
and is just proportional to the inverse of the eddy scale. The
result comes from assuming that the energy density per unit
wavenumber, with dimension m3s−2, depends only on ǫ and
k. The assumption is likely to be valid in what is known as
the “inertial subrange” separating the scale at which energy
is injected into large eddies from the much smaller scale at
which viscous dissipation occurs.

This amazing prediction of what is now known as the
“Kolmogorov spectrum” needed to be verified in a situation
with as large an inertial subrange as possible so that the −5/3
power law could be confirmed with confidence. Interestingly,
the exceptionally strong tidal currents near Seymour Narrows
north of Campbell River on Vancouver Island (with a peak
speed of more than 6 m s−1) offered one of the best opportu-
nities on earth, with a range of nearly 105 between the energy
input scale at about 100 metres and the dissipation at a scale
of a millimetre or so. Measurements obtained there in the

† Bob Stewart is former Director of the Institute of Ocean Sciences
at Sidney, British Columbia.

∗ Chris Garrett is Lansdowne Professor of Ocean Physics at the
University of Victoria. His e-mail address is garrett@phys.uvic.ca.
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Figure 1: Two particles a distance r apart in a turbulent
flow have different velocities, indicated by the black arrows
at positions 1 and 2. The green arrow in the lower half of the
figure depicts the velocity at position 1 minus the velocity
at position 2, which can be thought of as the velocity with
which a particle at position 1 is moving away from a particle
at position 2. We are interested in the average of the square
of this velocity difference.

late 1950s by a research group from the Pacific Naval Labo-
ratory in Esquimalt, B.C., did indeed provide dramatic con-
firmation of Kolmogorov’s predicted spectral shape, and also
determined the value of the constant that multiplies the for-
mula ǫ2/3k−5/3 [3]. The sensitive probes that measured the
turbulent velocity fluctuations in the water were mounted at
the front of a converted minesweeping paravane that could
be towed behind a ship and well below the sea surface. A
modern towed instrument, with improved sensors for velocity
and many other things, is shown in Figure 2.

A graph reproduced from the original paper by Grant et
al. [3] is shown in Figure 3. The straight line with slope −5/3
fits the data well on a log–log plot; if the spectrum is φ and
the wavenumber k, then

log φ = −5

3
log k + constant

means that φ ∝ k−5/3, as predicted. The −5/3 slope seen in
Figure 3 actually continues to much smaller values of k.

This being science, the story doesn’t stop there. The senior
author of this letter, and co-author of the B.C. paper [3],
remembers presenting the results at a turbulence meeting in
Marseilles in 1961 at which Kolmogorov himself expressed
strong reservations about his own theory, on the grounds
that turbulence is too intermittent to be described by simple
power laws [6]. The audience was presumably puzzled by
the simultaneous experimental confirmation and withdrawal
of a theory! In fact, it seems that the original arguments
are valid for second-order statistics, such as the 2/3 power
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Figure 2: The Towed Ocean Microstructure Instrument
(TOMI) developed by Rolf Lueck at the University of Vic-
toria. Here it is being recovered from the water in Knight
Inlet after making simultaneous measurements of the turbu-
lent small-scale fluctuations of velocity and temperature, as
well as measuring the backscatter of high-frequency sound
from biological organisms and the turbulence. The masts at
right angles to the main body of the instrument contain other
sensors and become vertical in the water, with the orange one
on top.

law for the mean square of the velocity difference, or the
energy spectrum, but do need modification for higher order
statistics such as the mean cube velocity difference (e.g. [4]).

A similar situation occurred more recently in the research
of the junior author of this article. A dimensional argument
akin to that of Kolmogorov led to the prediction that air bub-
bles in the turbulent region beneath breaking ocean waves
should be distributed over different sizes with a “size spec-
trum” proportional to (bubble radius)−10/3 [2], so that there
are many more small bubbles than large ones. The argument
assumed that air entrained in breaking waves is broken up
into ever smaller bubbles by the action of turbulence. But
herein lay the problem: whereas energy is cascaded to ever
smaller scales by turbulence and eventually removed by vis-
cosity, bubble break-up is eventually limited by the strong in-
fluence of surface tension for small bubbles, but the bubbles
don’t then disappear, at least not quickly. We thus predicted
and withdrew our −10/3 power law all in the same paper,
and were then surprised when, a couple of years later, the
−10/3 power law was confirmed observationally [1]!

There is clearly more to be understood in both of these
situations. While dimensional reasoning is very powerful and
leads to useful predictions in physics (much like Darwin’s
theory of natural selection in biology!), a full understanding
of turbulent flows is still not available. According to an apoc-
ryphal story, Werner Heisenberg said on his deathbed “When
I meet God, I am going to ask him two questions: Why
relativity? And why turbulence? I really believe he will have
an answer for the first.” The general problem of fluid flow
is, in fact, one of the seven Millennium Prize Problems for
which the Clay Institute of Mathematics is offering $1 million
(http://www.claymath.org/Millennium Prize Problems
/Navier-Stokes Equations/).
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Figure 3: The spectrum of turbulent velocity fluctuations
shows how the turbulent energy is distributed over various
scales, with their size being the inverse of the wavenumber k.
Here, experimental data obtained in 1959 are displayed in a
log–log plot, along with a straight line with a slope of −5/3.
The wavenumber k has been scaled to have a value of 1, so
that log k = 0, for the length scale of a few millimetres at
which viscous forces start to matter. The roll-off of the data
for log k greater than zero is caused by viscosity.
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Vedic Mathematics and
the Calculations of

Guru T̄ırthaj̄ı∗

Jan Hogendijk†

Introduction

This article was written as a reaction to several publica-
tions in the Netherlands on methods of mental calculation,
which have been presented as “Vedic mathematics.” The ad-
jective “Vedic” suggests that these methods date back to the
ancient Vedic period before 500 BCE.1 In this article I will
first give two examples of genuine Vedic mathematics. After a
brief intermezzo on the decimal position system and decimal
fractions, the so-called “Vedic” methods of mental calcula-
tion will be identified as the inventions of a twentieth-century
Guru. More information on the subject can be found in [3].

The March 2003 issue of π in the Sky also includes an ar-
ticle on Vedic Mathematics. It was written by Jeganathan
Sriskandarajah from Madison Area Technical College.

The Vedas

The Vedas are ancient religious and philosophical scriptures
that originated in India in the Vedic period. These texts were
composed in an Indo-European language that was the prede-
cessor of Sanskrit. Initially the Vedas were transmitted orally,
but later on they were recorded in writing. The word Veda has
the same root as the Dutch word “weten,” the German “wis-
sen” (meaning: to know), and the English “witness,” “un-
witting” and “to wit.” The Vedic texts refer to rituals and
fire-altars. Rules for the precise construction of these altars
are given in the Śulba-sūtra’s (rules for the measuring cord),
which also belong to the authentic Vedic literature. Some of
these sutras deal with the geometric knowledge that is nec-
essary for the construction of brick altars of different shapes
and sizes.

Examples of Vedic Mathematics

The following four sutras are taken from the Baudhāyana-
śulbasūtra, which was composed before 500 BCE. The text
and translation are adapted from the edition of Sen and Bag,
which is based on old Indian manuscripts in Benares, Munich,
London and Ujjain. In this work, the sutras are stated with-
out further explanation and without proof. I will not provide

∗ This article was translated and revised by the author from an
original version published in Dutch in the Nieuwe Wiskrant vol. 23 no.
3 (March 2004), pp. 49–52.

† Jan Hogendijk teaches mathematics in Utrecht (Nether-
lands) and history of mathematics in Leiden (Netherlands) and
Dhahran (Saudi Arabia). His research interests focus on the his-
tory of mathematical sciences in medieval Islamic civilization. See
www.math.uu.nl/people/hogend for his publications. His e-mail address
is hogend@math.uu.nl.

1The notation BCE stands for Before Common Era and CE stands
for Common Era. The BCE/CE system is synonymous with the much
more common BC/AD system (Ed.).

any commentary either, so as to leave the reader the pleasure
of pondering the meaning of these sutras. (See [5, pp. 18,
19, 78–80, 150–154, 164–169]; the numbering from [5] is used
here.)

(1.9) samacaturaśrasyāks.n. ayārajjurdvistāvat̄ım. bhūmim.
karoti

The diagonal of a square produces double the area.

(1.12) d̄ırghacaturaśrasyāks.n. ayārajjuh. pārśvamān̄ı
tiryaṅmān̄ı yatpr.thagbhūte kurutastadubhayam. karoti

The areas produced separately by the length and the breadth
of a rectangle together equal the area produced by the diagonal.

(1.13) tāsām. trikacatuskayordvādaśikapañcikayoh.
pañcadaśikās.t.ikayoh. saptikacaturvim. śikayor dvādaśikapañ-
catrim. śikayoh. pañcadaśikas.at.trim. śikayorityetāsūpalabdhih.

This is observed in rectangles having sides three and four,
twelve and five, fifteen and eight, seven and twenty-four,
twelve and thirty-five, fifteen and thirty-six.

(2.12) pramān. am. tr.t̄ıyena vardhayettacca catur-
thenātmacatustrim. śonena savíses.ah.

The measure is to be increased by its third and this again by
its own fourth less the thirty-fourth part [of the latter (Ed.)];
this is the diagonal of a square.

The last sutra has been interpreted as a close approxima-
tion to

√
2. Historians generally assume that this approxi-

mation was discovered not by accident but by some clever
mathematical method.

Historic Intermezzo: Discovery of the
Decimal System

In the Vedic sutras, numbers are expressed in words. Indo-
European roots of number words can be recognized in the
preceding quotations: tri = three, catur = quattuor in Latin
(cf. quadrilateral), pañca = pente in Greek (cf. pentagon),
dva = two, etc.

From the third century BCE onwards, that is to say, af-
ter the Vedic period, number symbols were used in North
India for the numbers one through nine. These symbols are
the predecessors of the modern 1, 2, 3, . . . , 9. Other symbols
were used for ten, twenty. . . , hundred, two hundred. . . , and
a symbol for zero had not yet been invented.

The oldest known symbols for “zero” occur in astronom-
ical computations in the sexagesimal place-value system, on
Babylonian clay tablets written in last three centuries BCE.
The zero was used as a place holder, as in “29 degrees, 0
minutes, and 43 seconds.” The sexagesimal system, includ-
ing the zero, was adapted by the Greek astronomers in the
second century BCE, and are still to be found today in an-
gles (degrees, minutes, and seconds) and units of time (hours,
minutes and seconds). From 300 BCE onwards, astronomical
methods from Babylon and ancient Greece, including the sex-
agesimal system, were transmitted to India as well. Probably
around 300 CE (six centuries later), the Indian astronomers
developed the modern decimal place-value system for inte-
gers. This system was transmitted into Arabic in the eighth
and early ninth century, but it never became popular in the
medieval Islamic world. In the eleventh and twelfth centuries,
the Indian number symbols were introduced in Christian Eu-
rope. The final victory of the system began in the Renaissance
as a result of the increase of trade and commercial transac-
tions. Decimal fractions were introduced by a few medieval
Islamic mathematicians in order to write the end results of
computations, but they were hardly used in the computa-
tions themselves (which were usually done in the sexagesimal
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system). In Europe, decimal fractions were independently
discovered by the Flemish mathematician Simon Stevin, who
published his discovery in 1585 in Leiden in Holland. Dec-
imal fractions probably arrived in India in the seventeenth
century, when French astronomical tables were studied by as-
tronomers in and around Delhi. During the English colonial
regime, decimal fractions were of course taught in schools.

The “Vedic” Mathematics of Guru Tirthaj̄ı

The “Vedic” methods of mental calculations in the dec-
imal system are all based on the book Vedic Mathemat-
ics by Jagadguru (world guru) Swami (monk) Śr̄ı (rev-
erend) Bhārat̄ı Kr.s.n. a Tı̄rthaj̄ı Maharaja, which appeared
in 1965 and which has been reprinted many times [4].

Figure 1: Guru Tı̄rthaj̄ı

This Guru was born
in 1884 near Madras
as Venkatraman Shas-
tri. He studied English,
mathematics, Sanskrit,
and other subjects at
various schools and col-
leges in India. In 1911 he
quit his teaching job in
order to devote himself
completely to study and
meditation in an ashram
near Mysore. In 1919
he was initiated as a
sannyasi (monk) and re-
ceived the name Bhārat̄ı
Kr.s.n. a Tı̄rtha. Shortly
afterwards, he became
the leader of ashrams.
He travelled extensively
through India, and, at
the invitation of the Self-
Realization Fellowship of
Yogananda, also to the
United States in 1958.

Bhārat̄ı Kr.s.n. a Tı̄rtha died in 1960 and his main work Vedic
Mathematics appeared posthumously.

The book contains sixteen brief sutras that can be used for
mental calculations in the decimal place-value system. An
example is the sutra ekādhikena purvena, meaning: by one
more than the previous one. The Guru explains that this
sutra can for example be used in the mental computation of
the period of a recurring decimal fraction such as 1/19 =
0.052631578947368421, as follows:

The last decimal of the period is 1. We now apply the
sutra by one more than the previous one to the number 19.
The previous one is the penultimate decimal in the decimal
representation of 19, so one more than the previous one is 2.
We multiply the last decimal of the period by 2 and get the
penultimate decimal of the period, and so on. Thus we find
the final decimals . . . 8421. We now compute 8×2 = 16, write
the 6 before the 8, and remember the 1. We add this 1 to the
next product 6 × 2 to obtain . . . 368421, and so on.2

2The Guru does not give a proof of why the method works. Here is a
simple number-theoretic proof: let nk be the k-th decimal in the decimal
expansion of 1/19 (thus n1 = 0, n2 = 5, n3 = 2 . . .). Then for k = 1, 2, . . .

we have 10k = 19(10k−1n1 +10k−2n2 + . . . +10nk−1 + nk)+ mk where
mk is an integer such that 0 < mk < 19; thus m1 = 10, m2 = 5, m3 =
12 . . .. Because 19nk + mk must be a multiple of 10, which implies that
−nk + mk must be a multiple of 10, we see that nk is equal to the last
digit of mk, which is the remainder of 10k after division by 19. Because
1018 ≡ 1 mod 19, we have n18 = m18 = 1. Since 2 · 10k+1 = 20 · 10k ≡

10k mod 19, we have 2mk+1 ≡ mk mod 19, hence n17 = m17 = 2,
n16 = m16 = 4, n15 = m15 = 8, m14 = 16, and n14 = 6. Then

The same method can be used for 1/29, but now we have
to take 3 as one more than the previous one.

The word “Vedic” in the title of the book suggests that
these calculations are authentic Vedic mathematics. The
question now arises how the Vedic mathematicians were able
to write the recurrent decimal fraction of 1/19, while decimal
fractions were unknown in India before the seventeenth cen-
tury. We will first investigate the origin of the sixteen sutras.
We cite the Guru himself [4, pp. xxxviii–xxix]:

“And the contemptuous or, at best, patronizing attitude
adopted by some so-called orientalists, indologists, antiquar-
ians, research-scholars etc. who condemned, or light heart-
edly, nay irresponsibly, frivolously and flippantly dismissed,
several abstruse-looking and recondite parts of the Vedas as
‘sheer nonsense’ or as ‘infant-humanity’s prattle,’ and so on,
. . . further confirmed and strengthened our resolute determi-
nation to unravel the too-long hidden mysteries of philosophy
and science contained in ancient India’s Vedic lore, with the
consequence that, after eight years of concentrated contempla-
tion in forest-solitude, we were at long last able to recover the
long lost keys which alone could unlock the portals thereof.

“And we were agreeably astonished and intensely gratified
to find that exceedingly tough mathematical problems (which
the mathematically most advanced present day Western sci-
entific world had spent huge lots of time, energy and money
on and which even now it solves with the utmost difficulty
and after vast labour involving large numbers of difficult, te-
dious and cumbersome ‘steps’ of working) can be easily and
readily solved with the help of these ultra-easy Vedic Sūtras
(or mathematical aphorisms) contained in the París̄ısta (the
Appendix-portion) of the Atharvaveda in a few simple steps
and by methods which can be conscientiously described as
mere ‘mental arithmetic.’ ”

The Guru adds [4, p. xl]:
“The Sūtras (aphorisms) apply to and cover each and ev-

ery part of each and every chapter of each and every branch
of mathematics (including arithmetic, algebra, geometry—
plane and solid, trigonometry—plane and spherical, conics—
geometrical and analytical, astronomy, calculus—differential
and integral etc.). In fact, there is no part of mathematics,
pure or applied, which is beyond their jurisdiction.”

Concerning the applicability of the sixteen sutras to all
mathematics, we can consult the Foreword to Vedic Mathe-
matics written by Swami Pratyagātmānanda Saraswati. This
Swami states that one of the sixteen sutras reads Calana-
kalana, which can be translated as Becoming. The Guru
himself translates the sutra in question as “differential cal-
culus” [4, p. 186]. Using this “translation” the sutra indeed
promises applicability to a large area in mathematics; but
the sutra is of no help in differentiating or integrating a given
function such as f(x) = 1/ sin x.

Sceptics have tried to locate the sutras in the extant
París̄ısta’s (appendices) of the Atharva-Veda, one of the four
Vedas. However, the sutras have never been found in authen-
tic texts of the Vedic period. It turns out that the Guru had
“seen” the sutras by himself, just as the authentic Vedas were,
according to tradition, “seen” by the great Rishi’s or seers of
ancient India. The Guru told his devotees that he had “re-
constructed” his sixteen sutras from the Atharva-Veda in the
eight years in which he lived in the forest and spent his time on
contemplation and ascetic practices. The book Vedic Mathe-
matics is introduced by a General Editor’s Note [4, p. vii], in
which the following is stated about the sixteen sutras: “[the]

style of language also points to their discovery by Śr̄ı Swāmij̄ı
(the Guru) himself.”

m13 ≡ 2 · 16 ≡ 2 · (10+6) ≡ 20+2 · 6 ≡ 1+2 · 6 mod 19. Thus the Guru
correctly adds the penultimate digit 1 of the number 16 to two times the
last digit 6. The same argument works for all other mi ≥ 10.
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The Guru finishes his book on Vedic Mathematics with a
(supposedly ancient) Indian verse that is a hymn to Krishna
or Shankara. The Guru states that the verse also contains
the value of π/10 expressed in what he calls an Alphabetical
Code-Language [4, pp. 360]. We finish this article with a brief
analysis of this verse, derived from [1]. In the verse, the dec-
imals of π are encoded according to the Indian Kat.apayād̄ı
system. This system was used by Indian astronomers in or-
der to encode complicated numbers (mathematical and astro-
nomical constants) into words and verses that were easy to
remember. The system was developed in Kerala in South-
India, probably in the ninth century CE. This dating already
presents a problem in connection with the supposed “Vedic”
origin of the verse. In order to explain an even more serious
problem with the verse, we first give some details about the
Kat.apayād̄ı system and then present the verse itself.

The Kat.apayād̄ı system works as follows. To each digit
between 0 and 9, a small group of consonants of the Sanskrit
alphabet is assigned (see the list below). This Kat.apayād̄ı
system can be compared to, but is more complicated than
the modern telephone keypad system 1 = ABC, 2 = DEF,
and so on. To encode a digit between 0 and 9, we choose any
Sanskrit consonant from the group belonging to this digit.
For the digit 1, for example, we can choose among the four
possibilities k, t., p, and y (this is why the system is called
Kat.apayād̄ı). Of course, each consonant can encode at most
one digit. In order to dispel all illusions about the Guru’s
verse for π, it is necessary to list the possible encodings in
detail (abbreviations such as d.h represent a single Sanskrit
consonant):
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1 = k, t., p, y; 2 = kh, th, ph, r; 3 = g, d. , b, l;

4 = gh, d.h, bh, v; 5 = ṅ, n. , m, ś; 6 = c, t, s.;

7 = ch, th, s; 8 = j, d, h; 9 = jh, dh; 0 = ñ, n.

To make words and verses, the following rules are added.
If two successive consonants (such as ‘vr’) are placed in a
word only the last consonant r counts, and the v is ignored.
A double consonant such as jj counts only once. Vowels and
consonants that do not occur in the list do not have a nu-
merical meaning, so they can be inserted anywhere without
changing the numerical value of the word or verse. Thus the
system was very flexible, and it was not difficult to compose
words or verses for complicated (series of) numbers. The dig-
its were encoded in reverse order.

A fifteenth century example from Kerala in South-India is
the verse:

vidvām. s
tunnabalah.
kav̄ı́sanicayah.
sarvārthaś̄ılasthiro
nirviddhān. ganarendraru
[2, p. 53].

The verse means:

The wise ruler whose army has been struck down gathers
together the best of advisers and remains firm in his conduct
in all matters; then he shatters the king whose army has not
been destroyed [2, pp. 57–58].

This verse consists of five Sanskrit words, and the letters
that carry numerical values are vv=44, tnbl=6033, kvśncy
=145061, sv(th)śl(th)r=7475372, nv(dh)gnrrr=04930222.
Because the digits were encoded in reverse order, the five
words encode the sexagesimal numbers

44/603,
33/602 + 06/603,
16/60 + 05/602 + 41/603,
273/60 + 57/602 + 47/603,
2220/60 + 39/602 + 40/603,

which astronomers wanted to memorize because they occur in
an expression used for computation of the Indian sine, equiva-
lent to a modern Taylor series. These numbers are written in
terms of the first three powers of 1/60, and they are rounded
values of (in modern terms) 90

11! (
π
2 )10, 90

9! (
π
2 )8, 90

7! (
π
2 )6, 90

5! (
π
2 )4,

and 90
3! (

π
2 )2, respectively.

Now we know enough about the authentic Kat.apayād̄ı sys-
tem to identify the origin of the Guru’s verse about π/10.
Here is the verse: (it should be noted that the abbreviation r.
represents a vowel in Sanskrit):

gop̄ı bhāgya madhuvrata
śr. ṅgíso dadhi sandhiga
khala j̄ıvita khātāva
gala hālā rasandhara.

According to the Guru, decoding the verse produces the
following number:

31415 92653 58979 32384 62643 38327 92.

In this number we recognize the first 31 decimals of π (the
32-th decimal of π is 5).

In the authentic Kat.apayād̄ı system, the decimals are en-
coded in reverse order. So according to the authentic system,
the verse is decoded as
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29723 83346 26483 23979 85356 29514 13.

We conclude that the verse is not medieval, and certainly
not Vedic. In all likelihood, the Guru is the author of the
verse.

Conclusion

There is nothing intrinsically wrong with easy methods of
mental calculations and mnemonic verses for π. However, it
was a miscalculation on the part of the Guru to present his
work as ancient Vedic lore. Many experts in India know that
the relations between the Guru’s methods and the Vedas are
faked. In 1991 the supposed “Vedic” methods of mental cal-
culation were introduced in schools in some cities, perhaps in
the context of the political program of saffronisation, which
emphasizes Hindu religious elements in society (named after
the saffron garments of Hindu Swamis). After many protests,
the “Vedic” methods were omitted from the programs, only to
be reintroduced a few years later. In 2001, a group of intellec-
tuals in India published a statement against the introduction
of the Guru’s “Vedic” mathematics in primary schools in In-
dia.

Of course, there are plenty of real highlights in the ancient
and medieval mathematical tradition of India. Examples are
the real Vedic sutras that we have quoted in the beginning of
this paper; the decimal place-value system for integers; the
concept of sine; the cyclic method for finding integer solutions
x, y of the “equation of Pell” in the form px2 + 1 = y2 (for
p a given integer); approximation methods for the sine and
arctangents equivalent to modern Taylor series expansions;
and so on. Compared to these genuine contributions, the
Guru’s mental calculation are of very little interest. In the
same way, the Indian philosophical tradition has a very high
intrinsic value, which does not need to be “proved” by the
so-called applications invented by Guru Tı̄rthaj̄ı.
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Mahārāj. Indian Journal of History of Science 34, 1–17.

[2] Gold, D. and D. Pingree, 1991: A hitherto unknown
Sanskrit work concerning Mādhava’s derivation of the
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Q: “How does one insult a mathematician?”
A: “Your brain is smaller than any ǫ > 0!”

Two mathematicians are studying a convergent series.
The first one says: “Do you realize that the series converges

even when all the terms are made positive?”
The second one asks: “Are you sure?”
“Absolutely!”

Q: What does a mathematician present to his fiancée when
he plans to propose to her?

A: A polynomial ring!

Q: Why don’t mathematicians ever spend time at the
beach?

A: Because they don’t need the sun to get a tan, they have
sin and cos.

Q: Why is it that derivatives can never finish telling a story?
A: Because they are always going off on tangents.

c©Copyright 2004
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Tribonacci in the Sky:
A Mathematical
Mountain Walk

Achim Clausing†

Going Downhill

Here is a game that you can find in some elementary school
math books:

“Every child in the class chooses four numbers. Below each
number, he or she writes the difference between this number
and its neighbour to the right. (The last number gets the first
one as its right-hand neighbour.) This calculation is called a
downward step. Now the children repeat stepping down until
they arrive at four equal numbers. The winner is the child
(or the children) requiring the most steps to arrive there.”

Here is an example:

3 1 7 14
2 6 7 11
4 1 4 9
3 3 5 5
0 2 0 2
2 2 2 2

We say that the quadruple (3, 1, 7, 14) has height 5 since it
takes 5 steps down to reach flat terrain. Thus, a step down
is one application of the map

δ(a, b, c, d) = (|b − a|, |c − b|, |d − c|, |a − d|).

The point of this game is not that the children should be
kept busy calculating for quite a while. Triples or five-tuples
of numbers would do well for that purpose, but with quadru-
ples it is amazing how fast one usually arrives at a constant
tuple.

Look at these three quadruples with their “trails” whose
values I have chosen at random in {0 . . . 99}. They are rather
typical (rather than trust me, repeat the experiment for
yourself):

25 86 92 23
61 6 69 2
55 63 67 59
8 4 8 4
4 4 4 4

57 34 90 42
23 56 48 15
33 8 33 8
25 25 25 25

37 18 15 3
19 3 12 34
16 9 22 15
7 13 7 1
6 6 6 6

† Achim Clausing is a professor of computing science
at the Department of Mathematics and Computing Science of
the University of Münster (Germany). His e-mail address is
achim.clausing@uni-muenster.de.

With the aid of a computer, it is easy to simulate a really
large class playing this game. A statistic of the heights of
10,000 random quadruples with values in {0 . . . 99} is shown
in Figure 1.

Almost 90% of the quadruples reach a constant tuple within
three to five steps!

The average height of a random quadruple in this exper-
iment is ≈ 3.88. If the random numbers were chosen from
a different range, e. g. from {0 . . . 109}, we would get essen-
tially the same picture (including the striking local maximum
in the frequency of tuples of height 3).

But, in case you didn’t notice it from the graph: there were
indeed 3 quadruples of height 10 and 2 of height 11 (thus two
of the 10,000 children in this class would be the winners).

1 2 3 4 5 6 7 8 9 10 11

1000

2000

3000

4000

5000

Figure 1: The heights of 10,000 random quadruples with
values in {0 . . . 99}.

On Returning Safely

High mountains, that is, quadruples with a large height, are
not easy to conquer. But before we venture to attack them,
we should, as a safety measure, make sure that there is a way
home from the larger heights. Simply walking downhill might
not always lead into the plains, as every mountain walker
knows. It is all too easy to get stuck somewhere.

That is, we should ask ourselves whether there is, for ev-
ery quadruple (a, b, c, d), an integer n and a value e such
that δn(a, b, c, d) = (e, e, e, e) (and then, δn+1(a, b, c, d) =
(0, 0, 0, 0)).

The question is by no means trivial. Even for very simple
maps f of some set X into itself, it has been observed that
repeated application of f always leads to the same element,
but nobody is able to prove this. One of the more prominent
examples for this phenomenon is the Syracuse function f on
the positive integers (named after the Syracuse University,
where L. Collatz found it in the thirties). Let

f(n) =

{

3n + 1 if n is odd,
n
2 if n is even.

Regardless of the number n you start with, repeated appli-
cation of f always leads down to 1. Although this has been
verified experimentally for values of n up to truly astronom-
ical size, no one has yet been able to show that it is true for
all n.

Fortunately, it is easy to see that the stepping game al-
ways ends at a constant tuple. If we start with an arbi-
trary quadruple (a, b, c, d) of non-negative integers, then each
step decreases the maximum component in the quadruple,
except when the right neighbour of the maximum is zero.
Let us assume that the maximum is a and that b = 0.
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Then δ(a, 0, c, d) = (a, c, |d − c|, a − d). This tuple also has
a as its maximum, hence either c > 0 and the next step
again reduces the maximum, or c = 0 and the next step is
δ(a, 0, d, a − d) = (a, d, a − 2d, d). One more time: Either
d > 0 and the maximum gets smaller, or d = 0 and the next
step is δ(a, 0, a, 0) = (a, a, a, a).

Thus, after four steps, either the maximum of the sequence
has got smaller or we have reached a constant tuple. This
proves that in the long run, we always get safely down to a
constant tuple.

As an alternative, it is easy to show that with four steps
we either will reach a constant tuple or all components of
the tuple are multiples of 2. This again implies that the four
number game eventually will reach a constant quadruple.

Climbing

Climbing means doing one step upwards after the other.
Sounds simple. But occasionally, one comes to a point where
it is not possible to continue upwards. This can happen here,
too.

If δ(x, y, z, u) = (a, b, c, d), we call (x, y, z, u) a predecessor
of (a, b, c, d). It is one step higher than (a, b, c, d).

The definition of the map δ tells us that there are signs
si (i = 0 .. 3) such that y − x = s0a, z − y = s1b, u − z = s2c
and x − u = s3d. Therefore,

(x, y, z, u) = (x, x + s0a, x + s0a + s1b, x + s0a + s1b + s2c),

and from x = u + s3d we see that

s0a + s1b + s2c + s3d = 0

holds. Furthermore, if we can find signs si such that this
equation holds, then clearly (a, b, c, d) has a predecessor.

For example, the tuple (3, 1, 7, 14) considered above obvi-
ously has no such signs since 3 + 1 + 7 < 14. From this
quadruple, it is not possible to do an upward step. On the
other hand, if a, b, c, d > 0, and

a + b + c = d, (⋆)

we can chose s0 = s1 = s2 = 1 and s3 = −1, and find the
predecessor

(x, y, z, u) = (x, x + a, x + a + b, x + a + b + c),

where x ≥ 0 can be chosen arbitrarily. How about a prede-
cessor of this tuple? We can choose x ≥ 0 such that

x + y + z = u

holds. This means

x + (x + a) + (x + a + b) = x + a + b + c,

or
x = (c − a)/2.

Thus, if for quadruples (a, b, c, d) with a + b + c = d and
a ≤ c we define the upwards-map γ by

γ(a, b, c, d)

=

(

c − a

2
,
c − a

2
+ a,

c − a

2
+ a + b,

c − a

2
+ a + b + c

)

=
1

2
(−a + c, a + c, a + 2b + c, a + 2b + 3c)

= (x, y, z, u),

then δ(x, y, z, u) = (a, b, c, d), x ≤ z and x + y + z = u. We
can choose the signs si as before and conclude that (x, y, z, u)
again has a predecessor.

Now we can climb one step after the other! Stated in some-
what less sportive terms, the tuples

(an, bn, cn, dn) = γn(a, b, c, d) (n ≥ 0)

have the heights hn = n+h, where h is the height of (a, b, c, d).
Don’t forget to start from a tuple where a + b + c = d and

a ≤ c. Let us, for example, take a mountain walk of 15 steps
starting from the tuple (0, 0, 1, 1) with the height h = 2:

0 0 1 1

1
2

1
2

1
2

3
2

0 1
2 1 3

2

1
2

1
2 1 2

1
4

3
4

5
4

9
4

1
2

3
4

3
2

11
4

1
2 1 7

4
13
4

5
8

9
8

17
8

31
8

3
4

11
8

5
2

37
8

7
8

13
8 3 11

2

17
16

31
16

57
16

105
16

5
4

37
16

17
4

125
16

3
2

11
4

81
16

149
16

57
32

105
32

193
32

355
32

17
8

125
32

115
16

423
32

81
32

149
32

137
16

63
4

There is no need to worry about the fact that these quadru-
ples are not integers. Just multiply them by the GCD of their
denominators; this clearly does not alter their heights.

If, say, we multiply the last line ( 81
32 , 149

32 , 137
16 , 63

4 ) of our
mountain hike by 32, we obtain the integer quadruple
(81, 149, 274, 504), which is 17 steps high.

Tuples of this height are rare; you don’t find them by a
quick random search. But once you have one, you can easily
produce others of the same height from it by multiplying it
with a nonzero constant, by adding the same constant to every
element of the tuple, by rotating it or by reversing its order.
None of these operations affects the height of the tuple.

We call tuples equivalent , if they can be converted into each
other by one of these operations. In particular, for every tuple
(a, b, c, d) 6= (0, 0, 0, 0) there is an equivalent normalized one,
denoted by [a, b, c, d], whose smallest and largest element are
0 and 1. It is obtained by subtracting the minimal component
from each of the components and dividing the result by its
maximum component.

In our example we find [81, 149, 274, 504] = (0, 68
423 , 193

423 , 1).

The Sky is the Limit

Now that we have seen that by repeated down stepping one
reaches the plains from every quadruple of rational numbers,
it is only natural to ask where we get from a non-rational
starting quadruple. One might conjecture that the “trails” of
such tuples would in general converge to a constant without
actually reaching it in finitely many steps.

As an experiment, we try the tuple (1, e,
√

7, π). The result
is a surprise:

1 e

√

7 π

e − 1 e −

√

7 π −

√

7 π − 1
√

7 − 1 π − e

√

7 − 1 π − e
√

7 + e − π − 1
√

7 + e − π − 1
√

7 + e − π − 1
√

7 + e − π − 1

It took us only three steps to get down! In fact, we should
not be surprised that much. The rational approximation
(1, 2.7, 2.6, 3.1) to our starting tuple has height 3, as have
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better approximations, and there is simply no reason to sus-
pect that in the limit anything should change.

Or is there? What, if we had a converging sequence of ratio-
nal quadruples of ever-increasing height? Then the limiting
quadruple is perhaps one of the more interesting viewpoints
on our mountain hike.

The question is not an academic one since in fact we already
have such a sequence of quadruples! Look at the normalized
version [an, bn, cn, dn] (n ≥ 0) of the sequence that we con-
structed in the preceding section. The normalized quadruples
of our 15-step mountain walk are, numerically,

0 0 1 1
0 0 0 1
0 0.333333 0.666667 1
0 0 0.333333 1
0 0.25 0.5 1
0 0.111111 0.444444 1
0 0.181818 0.454545 1
0 0.153846 0.461538 1

0 0.16129 0.451613 1
0 0.162162 0.459459 1
0 0.159091 0.454545 1
0 0.161905 0.457143 1
0 0.16 0.456 1
0 0.161074 0.456376 1
0 0.160563 0.456338 1
0 0.160757 0.456265 1

It is not hard to believe that this sequence converges to
(0, 0.160.., 0.456.., 1).

Say, the limit is (a, b, c, d). What properties could it have?
Since (an+1, bn+1, cn+1, dn+1) = γ(an, bn, cn, dn), it is not un-
reasonable to hope that

[γ(a, b, c, d)] = [a, b, c, d] = [δ(a, b, c, d)]

holds. In accordance with the elements of the sequence, the
limit should satisfy the relation (⋆ ), and since we are free to
multiply with a constant, we put (a, b, c, d) = (1, x, y, 1+x+y)
with unknown x, y about which we assume 1 ≤ x ≤ y. (We
can assume whatever we like, this is just a heuristic guess
about what the limit is.)

Then δ(1, x, y, 1 + x + y) = (x − 1, y − x, x + 1, x + y).
An equivalent tuple is (1, y−x

x−1 , x+1
x−1 , 1+x+y

x−1 ). Hence we try to
solve

(1, x, y, 1 + x + y) = (1,
y − x

x − 1
,
x + 1

x − 1
,
1 + x + y

x − 1
)

and find by comparing the second components

x =
y − x

x − 1

that y = x2, and from

y = x2 =
x + 1

x − 1

that x must be a (real) solution of 1 + x + x2 = x3. This
equation has exactly one real solution, which is

x =
1

3
+

(

19 − 3
√

33
)

1

3

3
+

(

19 + 3
√

33
)

1

3

3
= 1.83929 . . . .

The quadruple (1, x, x2, 1 + x + x2) = (1, x, x2, x3) indeed
satisfies

[1, x, x2, x3] = (0,
x − 1

x3 − 1
,

x2 − 1

x3 − 1
, 1)

= (0,
1

x3
,

1

x3
+

1

x2
, 1)

= (0, 0.160713 . . . , 0.456311 . . . , 1).

It is, by construction, an eigenvector of the linear map
(a, b, c, d) 7→ (b − a, c − b, d − c, d − a):

δ(1, x, x2, x3) = (x − 1, x2 − x, x3 − x2, x3 − 1)

= (x − 1) · (1, x, x2, x3−1
x−1 )

= (x − 1) · (1, x, x2, 1 + x + x2)
= (x − 1) · (1, x, x2, x3)
= 0.83929 . . . · (1, x, x2, x3).

By down stepping from (1, x, x2, x3), we obtain an equiva-
lent tuple, albeit with slightly smaller components. We have
reached a place from where there is no way back to flat earth:
There is not just π in the Sky , but some unexpected quadru-
ples, too!

A quadruple from which one cannot reach a constant tuple
by repeated application of δ does not have a finite height. It
is natural to say that it has height ∞. (We probably should
at this point define the sky as the set of all quadruples of
height ∞. But by this we would throw π out of the paradise,
an unforgivable sin in this magazine.)

Tribonacci in the Sky

The sky is where the gods are, and they live on a high
mountain. The old Greeks knew that (and some mathematics
as well). Now the mathematical sky is not just inhabited by
Greek gods (say, Pythagoras, Euclid, or the immortal number
π) but also by many lesser celebrities. One of them is a certain
Mr. Tribonacci∗ , a cousin of the more famous mathematician
Leonardo of Pisa, known as Fibonacci.

We all know and love the Fibonacci numbers 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144,. . . , where each element is the sum of
the two preceding ones: fn = fn−1+fn−2. The ratios fn/fn−1
of two consecutive Fibonacci numbers converge to the Golden
Ratio 1

2 (1 +
√

5) = 1.61803 . . ., which is the positive root of

the equation 1 + x = x2.
In the Tribonacci number sequence 0, 1, 1, 2, 4, 7, 13,

24, 44, 81, 149, 274, 504,. . . , each element is the sum of the
preceding three elements: tn = tn−1 + tn−2 + tn−3. The ratios
tn/tn−1 of two consecutive Tribonacci numbers converge to
the positive root of the equation 1 + x + x2 = x3, which we
happen to know as x = 1.83929 . . ..

This sequence, though less common than the Fibonacci
sequence, appears in many contexts (it has number A75 in
Sloane’s On-Line Encyclopedia of Integer Sequences, the Fi-
bonacci sequence being A45). It is closely connected with our
stepping game.

Did you notice that the four numbers 81, 149, 274, 504 in
the Tribonacci sequence form the quadruple of height 17 that
we constructed in our 15-step-mountain walk? And that the
Tribonacci recursion is just the condition (⋆) for a quadruple
to have a predecessor?

The Tribonacci sequence is another “stairway to heaven,”
in the technical sense of this article: The heights hn =
height(tn, tn+1, tn+2, tn+3) of the tuples in this sequence are
5, 5, 8, 8, 11, 11, 14, 14, 17, 17, . . ., that is, they increase by 3
every two steps. This is easy to prove. A similar fact holds
for Tribonacci-like sequences starting with triples other than
{0, 1, 1}.

The Tribonacci numbers also show up in the answer to the
following question: What is the smallest integer a such that
{0 . . . a}4 contains a quadruple of height n?

Let us denote this integer by an. The first elements of the
sequence (a1, a2, . . .) are

(1, 1, 1, 3, 3, 4, 9, 11, 13, 31, 37, 44, 105, 125, 149, 355, . . .).

∗The “Mr.” stands for the Italian title “Messer,” poor Mr. Tri-
bonacci not having any first name.
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As an example, a7 = 9 since (0, 1, 4, 9) has height 7 and
there is no integer tuple of height 7 whose elements are all
less than 9. Can you design a tuple of height 12 whose largest
element is 44?

This sequence is A045794 in the On-Line Encyclopedia of
Integer Sequences, a less prominent rank. But the encyclo-
pedia knows that it can be expressed using the Tribonacci
numbers as

(t0 + t2, t1 + t2, t3, t2 + t4, t3 + t4, t5, t4 + t6, . . .),

and it also tells the relation of this sequence to the four num-
ber game.

Viewing the Scenery

The question remains why the average height of a random
quadruple should only be about 4. Why are the higher tuples
so scarce?

To see the reason, we divide the set of all quadruples of
non-negative numbers into two disjoint parts, one part being
those tuples in which the minimum and maximum elements
are neighbours (in the cyclic sense), the other part consisting
of the tuples where the maximal and minimal elements are
not neighbours.

In this latter part, all quadruples have a height that is
at most 5. To see this, we first observe that a tuple with
two equal components that are not neighbours, say (a, b, c, b),
has a height h ≤ 3: δ(a, b, c, b) = (u, v, v, u) with u = |b −
a|, v = |c− b|, δ(u, v, v, u) = (w, 0, w, 0) with w = |v−u|, and
δ(w, 0, w, 0) = (w, w, w, w).

Now, for a tuple whose maximal and minimal elements are
not neighbouring, there is always an equivalent one of the
form (0, x, 1, y) with 0 ≤ x ≤ y ≤ 1 (do you see why?). Since
δ(0, x, 1, y) = (x, 1 − x, 1 − y, y), and δ(x, 1 − x, 1 − y, y) =
(a, b, c, b) with a = |1 − 2x|, b = |y − x| and c = |1 − 2y|, we
see that (0, x, 1, y) has height at most 5.
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Figure 2: An approximation of the graph of the function
f(x, y) = height(0, x, y, 1) in the domain {(x, y) : 0 ≤
x, y, x + y ≤ 1}.
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Figure 3: The graph of g(x) = f(x, 0.456).

This simple argument shows that indeed roughly half of
all quadruples have a “low” height. What about the others,
that is, those with cyclically adjacent minimum and maxi-
mum components?

By normalizing and possibly reversing the order of such a
tuple, we can always obtain an equivalent tuple of the form
(0, x, y, 1) with x, y ∈ [0, 1]. We may also assume that x+y ≤
1 since otherwise the tuple (0, x, y, 1) can be replaced by the
equivalent one (0, 1 − y, 1 − x, 1).

Figure 2 shows (a rather crude approximation of) the graph
of the function f(x, y) = height(0, x, y, 1) in the domain
{(x, y) : 0 ≤ x, y, x + y ≤ 1}.

It is apparent that in the part where x > y, the value is
everywhere 3. (This is again easy to verify.) In that sense, at
least three quarters of all quadruples have height h ≤ 5.

Only in the remaining part exist points (x, y)—that is,
quadruples (0, x, y, 1)—with larger heights.

The red peak in the preceding figure is centered around the
normalized point (0, 0.160 . . . , 0.456 . . . , 1). It is the mountain
on whose summit the quadruple of height ∞ resides. Only
here† we can find quadruples of large height. The probability
that (the normalized version of) a randomly chosen quadruple
lies close to this point is apparently small. This explains why
it is difficult to find high quadruples by a random search.

Just how difficult, is illustrated by a section through the
graph of f at the critical point. Figure 3 shows the graph of
g(x) = f(x, 0.456).

As you can see, the peak around x = 0.160 . . . (where
g(x) = ∞) is really sharp, a true challenge for every moun-
taineer!
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“Unstable”
Rearrangements of

n Points
Chris Garrett†

Mathematics students learn early that there are n! ways of
arranging n different points; the first point can be chosen in n
different ways, the second in just n − 1 ways, and so on. If
this doesn’t seem familiar, have a look at the nice article by
Byron Schmuland in the last issue of π in the Sky [3]. An
interesting variation on n! cropped up recently in a study of
ocean mixing conducted by Kate Stansfield, Richard Dewey
and me [4].

We were analyzing profiles of water density obtained in
Juan de Fuca Strait using an instrument called a CTD. This
records electrical conductivity (C), temperature (T) and pres-
sure, hence depth (D). The conductivity depends on the salin-
ity (S) as well as the temperature, so that C and T give S. In
turn, T and S give the density of the water.

Figure 1: A CTD about to be lowered into the sea. This
model records internally and is suitable for use from a small
boat (in this case the University of Victoria’s 16 m John
Strickland). Other CTDs send signals up a conducting ca-
ble for logging on board ship.

† Chris Garrett is Lansdowne Professor of Ocean Physics at the
University of Victoria. His e-mail address is garrett@phys.uvic.ca.

Figure 2: The blue line in the left-hand panel is the vertical
profile of a quantity σ, indicating density, plotted against the
depth in metres. The red line is the profile after sorting it so
that σ increases with depth. The right-hand panel shows the
vertical displacement L, in metres, of each data point during
this sorting, and shows several distinct overturning regions.
The Thorpe scale LT is the root mean square value of L.

If the density increases with depth, the water is hydro-
statically stable. If, on the other hand, there are sections of
the profile with dense water on top of light water (Figure 2),
these are hydrostatically unstable and cannot persist. They
must have been produced by some sort of overturning motion
(perhaps an internal equivalent of a breaking wave at the sea
surface) and will subsequently collapse. These overturns are
an indication that mixing is occurring, with possibly profound
influences on the physics and biology of the sea.

With some handwaving about the physics, it seems that
the vertical mixing rate (which is what we were interested
in) can be related to the distances that water parcels have
to be moved vertically to produce a reordered stable profile
in which the density increases steadily downwards (Figure 2).
The root mean square (rms) distance that the water parcels
are moved in this reordering is denoted LT and known as the
Thorpe scale after Steve Thorpe, who first used this approach
while studying mixing in the fresh water of Loch Ness (where
the water density depends only on temperature). The tur-
bulent mixing rate actually has the units of diffusivity (say
m2 s−1), with the so-called eddy diffusivity found empirically
to be given approximately by 0.1NL2

T . Here N is a measure of
the strength of the stratification of the reordered density pro-
file, with the units of frequency (s−1). It is the frequency with
which a water parcel would oscillate if displaced vertically in
the reordered profile. The collapse time of the unstable re-
gions observed before reordering is proportional to N−1.

So much for the physics background. We wanted to go be-
yond just looking at the rms displacements of water parcels
and look at the probability distribution of individual displace-
ments, i.e. did the rms value come from lots of small displace-
ments or just a few big ones? We determined this from our
data, but wanted some theoretical ideas for comparison. An
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obvious one was to see what would happen if all redistribu-
tions were equally likely. For a start on this, we needed to
know how many reorderings we had to consider. This is less
than the simple answer of n! as some of the profiles were never
unstable to start with, at least not in the sense that one has
to reorder the whole set. For example, with just two points,
labelled 1 and 2, with density increasing with the numerical

value, then profile

(

2
1

)

is unstable, but

(

1
2

)

is not. Thus

we have only 1 case to consider instead of 2! = 2. With 3

points,





3
1
2



,





3
2
1



 and





2
3
1



 qualify as “complete” over-

turns in which the whole array is involved in a reordering

to the stable profile





1
2
3



, even though 2 stays put in the

second case. On the other hand, the profile





1
2
3



 itself ob-

viously does not need any reordering, and the profiles





1
3
2





and





2
1
3



 can be reordered without involving the first and

last points respectively. Thus we have 3 cases to consider
instead of 3! = 6.

With 4 points there are 24 cases to evaluate in the same

way. To give a couple of examples,









4
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qualifies as a com-

plete overturn, even though 2 is not moved, but









2
1
4
3









does

not qualify, as reordering involves just the reversal of the top
and bottom pairs; it is thus a superposition of two second-
order overturns rather than a fourth-order one. The reader
may check that for 4 points we end up with 13 cases instead
of 24 and for 5 we have 71 instead of 120, but this is getting
tedious, and a simple computer program needs to be writ-
ten to go much further. Running even this becomes time-
consuming as n gets large; already for n = 8 we have to
evaluate 8! = 40 320 cases.

Thus our little problem was to determine the number of
cases, denoted by F (n), say, as a function of n. Maybe
the mathematical readers of this newsletter can immediately
write down the answer, and I could pretend that we did. The
truth is that we cheated by generating the series up to n = 8
on a computer and then checking the wonderful compilation
by Sloane and Pouffe [2]. There turned out to be more than
one candidate solution all the way up to n = 7, but unique-
ness seemed to emerge by n = 8. The answer is the recurrence
relation

F (n) = n! −
n−1
∑

k=1

k!F (n − k).

This actually arose in a completely different problem [1],
but led us to slap our foreheads when we saw it. We had spent
a little time trying for a closed form for F (n), whereas the
recurrence formula is really rather obvious: presented with

the n! rearrangements of n points we have to exclude the ones
that start with the unaltered point 1 followed by the F (n−1)
complete overturns of the remaining n − 1 points, also the
2! arrangements of the first two points times the F (n − 2)
complete overturns of the remaining n − 2 points, and so
on. I’d add an exclamation mark at this point were it not
for the risk of the reader confusing it with the factorial sign!
(Oops.) The only detail remaining was that we had to choose
F (1) = 1 to get this recurrence relation to start properly
and give F (2) = 1, even though we could not really define
a reordering of a single point. The difference between F (n)
and n! is actually a small fraction of n! as n becomes large,
and maybe a clever reader can work out a good approximate
formula (known as an “asymptotic” approximation) for F (n)
for large n.

Anyway, after establishing how many cases we needed to
consider, we could return to the first problem we had set
for ourselves. This was to find the probability distribution
(which is just the likelihood of occurrence) of displacements
of a given magnitude within any overturn of, say, n points,
assuming that each permitted rearrangement is equally likely.
First considering all n! possible rearrangements (even though
we have ruled out some of them), we see that each point can
move any number of positions from 0 to whatever takes it to
get to the farthest end of the overturn. A zero displacement
only occurs for 1 of these n possibilities, regardless of where
the point starts, and so has a probability of 1/n. A move of 1
position can be in either direction, unless the point is already
at the top or bottom of the overturn, and so on. I leave
the reader to establish that a move of m has a probability of
2(n−m)/n2 for m from 1 to n. Overall, then the probability
is as shown in Figure 3, with small displacements more likely
than large ones.

Figure 3: The lines joining the points give the probability
of a particle displacement as a function of the fractional dis-
placement (the normalised length scale) m/n. The solid red
line is for n = 50, considering all n! cases. For other values
of n the solid red line still applies for a fractional displacement
of 1/n and larger, but connects to 1 for m = 0, as shown by
the dashed red line for n = 8. The blue lines connect the val-
ues for n = 3 to 8, now only allowing for complete overturns.
Note that the probability has also been multiplied by n, so
that the probability values times 1/n add up to 1.
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We now, as before, exclude the cases that do not consti-
tute complete overturns. This changes the picture somewhat,
increasing the likelihood of larger displacements (Figure 3),
though the difference decreases as n increases. Details of the
mathematics are described in our paper [4].

Actual data (Figure 4) showed a greater probability of small
displacements than given by our model, for reasons that may
be associated with molecular diffusion, blurring extreme val-
ues. There is more to be done, but this is straying back into
physical oceanography.

Figure 4: The solid red and blue lines show the probability
distribution of actual displacements from a number of CTD
profiles taken in winter (red) and summer (blue). The error
bars on each value (vertical lines) for each value are large,
but the trends in the results are clear. The dashed blue line
shows, for comparison, the expectations from our model for
n = 50 (a typical value). This is for the unrestricted case
(with all n! possible rearrangements considered), but there is
little difference from the restricted case for large values of n.

So what are the messages of this article? One is that even
those of us who have drifted from physics and mathemat-
ics into their application in the real world still love prob-
lems like the one described here when they crop up in our
work. Another is that Monsieur Comtet surely didn’t antici-
pate oceanographic applications of his series, where as Sloane
and Plouffe might be less surprised at the range of users of
their encyclopaedia. My main message to any student reader,
though, is that if you enjoy mathematics and physics, and
want to apply them to a research field that is fun, consider
ocean physics!
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Q: Why do mathematicians, after a dinner at a Chinese
restaurant, always insist on taking the leftovers home?

A: Because they know the Chinese remainder theorem!

“That math prof.’s marriage, I heard, is falling apart.”
“That doesn’t surprise me: he’s into scientific computing,

and she’s incalculable. . . .”

Q: What is polite and works for the phone company?
A: A deferential operator. . . .

Trigonometry for farmers: swine and coswine. . . .

c©Copyright 2004
Sidney Harris
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Problem 1. Two hospitals H1 and H2 treat exactly the
same number of patients during a year. Each patient suffers
from exactly one of two diseases, D1 or D2. Hospital H1
cures a greater percentage of patients than H2. However, H2
cures a greater percentage of D1 patients and also a greater
percentage of D2 patients. Is this possible?

Problem 2. The numbers 1, . . . , n are written in a row. It
is permitted to transpose any two neighbouring numbers. If
2005 operations are performed, is it possible that the final
arrangement of numbers coincides with the original arrange-
ment?

Problem 3. Prove that at least two of 100 distinct positive
integers ≤ 294 have a difference of 2, 3, or 5.

Problem 4. Find the real solutions of the system
(x + y)5 = z, (y + z)5 = x, (z + x)5 = y.

Problem 5. Let A1, . . . , An be points on a circle of radius
one. Prove that there is a point P on the circle such that
∑n

k PAk > n.

Send your solutions to π in the Sky : Math Challenges.

Solutions to the Problems Published in the

September, 2003 Issue of π in the Sky:

Problem 1. Let g : (0,∞) → (0,∞), g(x) = x +
√

x.
Note that g is increasing and bijective, and

f(x +
√

x) ≤ x ⇐⇒ f(g(x)) ≤ x.

On letting y = g(x) ⇒ x = g−1(y), we may write this
condition as

f(y) ≤ g−1(y). (1)

On the other hand,

x ≤ f(x) +
√

f(x) ⇐⇒ x ≤ g(f(x)).

Since g−1 also is increasing, we have

g−1(x) ≤ g−1(g(f(x)));

that is,

g−1(x) ≤ f(x). (2)

From (1) and (2) we get

f(x) = g−1(x) =
1

4

(

−1 +
√

1 + 4x
)2

.

Problem 2. (Solution given by Robert Bilinski, Montréal)
The given equation

x2 − xy + y2 = x + y

is equivalent to

x2 − x(y + 1) + y2 − y = 0.

Since

∆x = (−y − 1)2 − 4(1)(y2 − y) = −3y2 + 6y + 1

needs to be positive or zero for x to be integral, we need to
solve

−3y2 + 6y + 1 ≥ 0.

Since
∆y = 62 − 4(−3)(1) = 48 > 0

and a = −3, ∆x ≥ 0 in between the roots. In other words,
∆x ≥ 0 if

y ∈
[

3 − 2
√

3

3
,
3 + 2

√
3

3

]

= [−0.1547 . . . , 2.1547 . . .].

But we want integer solutions, so that y ∈ {0, 1, 2}. Sub-
stituting in the original equation and solving for x, we find
that

(x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}.

Problem 3. There are subsets of {1, 2, . . . , 2003} with 668
elements satisfying the required property. Indeed,

A = {3k + 1|k = 0, 1, . . . , 667}

has 668 elements and satisfies the required property: for every
x, y ∈ A,

x − y ≡ 0 mod 3

and
x + y ≡ 2 mod 3;

thus x − y does not divide x + y. If there is a subset

B ⊂ {1, 2, . . . , 2003}

with more than 668 elements, then there are two of them with
a difference of less then 3. Hence B contains two elements a
and b such that a− b = 1 or a− b = 2. If a− b = 1 then a− b
divides a+ b. If a− b = 2 then a and b are of the same parity
and a − b divides a + b. Therefore the required set is A.

Problem 4. Let us solve a more general problem: If
x1, . . . , xn are positive real numbers such that

n
∑

i=1

1

n − 1 + xi
> 1,

then
x1x2 . . . xn < 1.

Solution: Let

xi =
(n − 1)yi

1 − yi
.

Then

n
∑

i=1

1

n − 1 + xi
> 1 ⇐⇒

n
∑

i=1

1 − yi

1 − yi + yi
> n − 1

⇐⇒ n −
n

∑

i=1

yi > n − 1 ⇐⇒
n

∑

i=1

yi < 1.
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Now

x1x2 . . . xn = (n − 1)n y1 . . . yn

(1 − y1) . . . (1 − yn)

< (n − 1)n y1 . . . yn

(y2 + . . . + yn) . . . (y1 + . . . + yn−1)

≤ (n − 1)n

(n − 1)n

y1 . . . yn

n−1

√

(y1 . . . yn)n−1
= 1.

(In the last inequality we have applied the AGM inequality:
y2+...+yn

n−1 ≥ n−1
√

y2 . . . yn etc.)

Problem 5. Let A, B, C, and D be the given points. The
triangle made with any three of these points is acute. Indeed,
if consider △ABC then

cos Â =
AB2 + AC2 − BC2

2AB · AC
≥ 2 + 2 − 4

2AB · AC
= 0.

Therefore
Â ≤ 90◦.

We conclude that ABCD is a convex quadrilateral and also
B ≤ 90◦, C ≤ 90◦, and D ≤ 90◦. As Â+B̂+Ĉ+D̂ = 360◦, the
only consistent situation is A = B = C = D = 90◦. Hence
ABCD must be a rectangle. If we assume that AB = a,
BC = b, a 6= b, and a, b ∈ [

√
2, 2], then

AC =
√

a2 + b2 >
√

2 + 2 = 2,

which is a contradiction. Therefore a = b and ABCD is a
square.

Problem 6. Let O be the center of the circles and A, B, C
be the vertices of the triangle with the maximum area. The
point O must belong to the interior of the triangle. On the
other hand, it must be the orthocenter of the triangle ABC.
Indeed, if O is not the orthocenter of the triangle then AO is
not perpendicular to BC. Take a line through A parallel to
BC. This line is not tangent to the circle and hence intersects
the circle at a point D (see Figure 1). Now if we choose a
point M in the arc AD the area of the △BMC is greater then
the area of △BAC, a contradiction. In △AOC (see Figure 2)

AC2 = 1 + 16 + 8 cosB = 17 + 8 cosB.

If R is the radius of the circumcircle of △ABC, then

AC2 = 4R2 sin2 B.

Hence
4R2 sin2 B = 17 + 8 cosB. (3)

In △BOA
′

and △BAA
′

BA
′

= OB cos(90◦ − C) =
√

7 sin C

and
BA

′

= AB cos B = 2R cos B sin C.

Hence
2R cos B =

√
7. (4)

Eliminating R from (3) and (4) we obtain

8 cos3 B + 24 cos2 B − 7 = 0;

hence

(2 cosB − 1)(4 cos2 B + 14 cosB + 7) = 0.

The only acceptable solution is cosB = 1/2 and hence

B = 60◦. We immediately obtain B̂AA′ = 30◦, OC
′

= 1/2

and hence CC
′

= 9/2. Also sin ÂBB′ = 1/(2
√

7), BC
′

=

3
√

3/2, AC =
√

21, AC
′

=
√

3/2 and AB = 2
√

3. Thus

Area(△ABC) = 9
√

3/2 is the required maximum area.
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The figures on pages 7, 8,
12, 20, 22, 23, and 36 were
drawn with Asymptote, a
powerful new descriptive
vector graphics language
for technical drawing de-
veloped at the University
of Alberta. The term vec-
tor graphics refers to a
method for producing fig-

ures that retain their high quality even at arbitrarily large
magnifications.

The authors of Asymptote (Andy Hammerlindl, John C.
Bowman, and Tom Prince) would like to thank the Natu-
ral Sciences and Engineering Research Council of Canada,
the Pacific Institute for Mathematical Sciences, and the
University of Alberta Faculty of Science for their gen-
erous financial support. Asymptote is freely available,
under the GNU General Public License, from the web
site http://asymptote.sourceforge.net, which includes a
gallery of example Asymptote code and output.
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